2.已知集合M={a,b,c}中的三個元素可構(gòu)成某一個三角形的三邊的長,那么此三角形一定不是( 。
A.直角三角形B.銳角三角形C.鈍角三角形D.等腰三角形

分析 由集合中元素的互異性可知:a,b,c互不相等,a,b,c構(gòu)成三角形的三邊長,得到三角形的三邊長互不相等,此三角形沒有兩邊相等,一定不為等腰三角形.

解答 解:根據(jù)集合元素的互異性可知:
a,b,c三個元素互不相等,
若此三個元素構(gòu)成某一三角形的三邊長,
則此三角形一定不是等腰三角形.
故選:D.

點評 本題考查了三角形形狀的判斷,用到的知識有:等腰三角形的性質(zhì),以及集合元素的特點,掌握集合元素的互異性是解本題的關(guān)鍵,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.奇函數(shù)f(x)的定義域為R,滿足f(x)=log3x,x>0,則f(x)≥0的解集是[-1,0]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.正三棱錐A-BCD中,AB⊥AC,且BC=1,則三棱錐A-BCD的高為( 。
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.長方形ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,求:
(1)直線AB與CD1,BB1與AD,AB1與BC所成角的余弦值;
(2)直線AA1與BC1,A1B1與BC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知a,b,c∈R,且ab+bc+ac=1.
(1)求證:|a+b+c|≥$\sqrt{3}$;
(2)若?x∈R,使得對一切實數(shù)a,b,c不等式m+|x-1|+|x+1|≤(a+b+c)2恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.求下列函數(shù)的單調(diào)區(qū)間.
(1)y=${2}^{{x}^{2}-2x-1}$
(2)y=${(\frac{1}{3})}^{{x}^{2}-2x-1}$
(3)y=${2}^{\sqrt{{x}^{2}-2x-1}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知△ABC頂點A(1,-2),AB邊上的高CD所在的直線方程為:x+y-2=0,AC邊上的中線BE所在直線方程為:2x-y+3=0.
(I)求B點坐標;
(II)求邊AC所在直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.有5名優(yōu)秀畢業(yè)生到母校的3個班去做學習經(jīng)驗交流,則每個班至少去一名的不同分派方法種數(shù)為150.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.如圖,直線l⊥平面α,垂足為O,正四面體(所有棱長都相等的三棱錐)ABCD的棱長為a,C在平面α內(nèi),B是直線l上的動點,當點O到AD的距離最大時,直線AD與平面α的距離為$\frac{2+\sqrt{2}}{4}$a.

查看答案和解析>>

同步練習冊答案