用秦九韶算法計算函數(shù)f(x)=12+35x-8x2+79x3+6x4+5x5+3x6當(dāng)x=-4時的函數(shù)值時.v2的值為( 。
A、3B、-7C、34D、-57
考點(diǎn):秦九韶算法
專題:算法和程序框圖
分析:f(x)=12+35x-8x2+79x3+6x4+5x5+3x6=(((((3x+5)x+6)x+79)x-8)x+35)x+12,利用秦九韶算法即可得出.
解答: 解:f(x)=12+35x-8x2+79x3+6x4+5x5+3x6=(((((3x+5)x+6)x+79)x-8)x+35)x+12,
∴當(dāng)x=-4時的函數(shù)值時,v0=3,v1=3×(-4)+5=-7,v2=-7×(-4)+6=34.
故選:C.
點(diǎn)評:本題考查了秦九韶算法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a,b,c滿足a2+b2
1
4
c≤1,則a+b+c的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知遞增的等差數(shù)列{an}滿足:a1,a2,a4成等比數(shù)列,且a1=1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=log2(1+
1
an
)
,設(shè)Tn=b1+b2+…+bn,求數(shù)列{
1
2Tn2Tn+1
}
的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△BCD所在的平面垂直于正三角形ABC所在的平面,∠BCD=90°,PA⊥平面ABC,DC=BC=2PA,E、F分別為DB、CB的中點(diǎn).
(1)證明:P、A、E、F四點(diǎn)共面;
(2)證明:AE⊥BC;
(3)求直線PF與平面BCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由曲線y=x2和直線y=0,x=1,y=
1
4
所圍成的封閉圖形的面積為(  )
A、
1
6
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
1
2
bx2-(a+b)x
,
(1)當(dāng)a=1,b=0時,求f(x)的最大值;
(2)當(dāng)b=1時,設(shè)α,β是f(x)的兩個極值點(diǎn),且α<β,β∈(1,e](其中e為自然對數(shù)的底數(shù)).求證:對任意的x1,x2∈[α,β],|f(x1)-f(x2)|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
cos2θ
6
x3+
3
sin2θ
2
x2-tan2θ,其中θ∈(0,
3
],若g(x)=f′(x),則g′(-1)的取值范圍是( 。
A、[-2,2]
B、[-
2
,
3
]
C、[-1,2]
D、[-
2
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,有
a
sinA
=
b
cosB
,則B的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了了解1000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為40的樣本,則分段的間隔為
 

查看答案和解析>>

同步練習(xí)冊答案