以圓x2+y2=4上點(diǎn)(1,
3
)為切點(diǎn)的圓切線方程是
 
考點(diǎn):圓的切線方程
專題:直線與圓
分析:直接利用圓上的點(diǎn)的切線方程,求出即可.
解答: 解:因?yàn)椋?,
3
)是圓x2+y2=4上的點(diǎn),
所以它的切線方程為:x+
3
y=4,
即:x+
3
y-4=0,
故答案為:x+
3
y=4
點(diǎn)評(píng):本題考查圓的切線方程,判斷點(diǎn)在圓上是解題的關(guān)鍵.圓上的點(diǎn)(x0,y0)的切線方程為:xx0+yy0=R2,值得注意圓的切線方程的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
-2x+1
的定義域?yàn)?/span>(  )
A、(-∞,
1
2
]
B、(-∞,
1
2
C、(
1
2
,+∞
D、[
1
2
,+∞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡f(x)=
sin(π-x)cos(2π-x)tan(-x+3π)
-tan(-x-π)sin(-
2
-x)

(2)若sin(x+
2
)=
1
5
,求f(x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖程序框圖,如果輸出的函數(shù)值在區(qū)間(
1
9
,
1
3
)
內(nèi),那么輸入實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F2是橢圓
x2
25
+
y2
9
=1
的右焦點(diǎn),點(diǎn)A(2,2)在橢圓內(nèi),點(diǎn)M是橢圓上一動(dòng)點(diǎn),求|MA|+|MF2|的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P(x,y)到兩條坐標(biāo)軸的距離之和等于它到點(diǎn)(1,1)的距離,記點(diǎn)P的軌跡為曲線W,給出下列四個(gè)結(jié)論:
①曲線W關(guān)于原點(diǎn)對(duì)稱;
②曲線W關(guān)于直線y=x對(duì)稱;
③曲線W與x軸非負(fù)半軸,y軸非負(fù)半軸圍成的封閉圖形的面積小于
1
2
;
④曲線W上的點(diǎn)到原點(diǎn)距離的最小值為2-
2

其中,所有正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種細(xì)胞1min分裂一次,若不分裂就會(huì)死亡.分裂和死亡的概率各占
1
2
,現(xiàn)有2個(gè)細(xì)胞,2min時(shí)間后,有細(xì)胞存活的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在區(qū)域M={(x,y)||x|+|y|≤2},雙曲線
x2
4
-y2=1的兩條漸近線將平面分成四部分,其中焦點(diǎn)所在的兩部分區(qū)域記作N,在區(qū)域M內(nèi)任取一點(diǎn)P(x,y),則點(diǎn)P落在區(qū)域N內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平行六面體ABCD-A1B1C1D1的所有棱長都是1,∠BAD=∠BAA1=∠DAA1=60°,O為A1C1中點(diǎn),記
AB
=
a
,
AD
=
b
,
AA1
=
c

(1)用向量
a
b
,
c
表示向量
AO
;
(2)求|
AO
|

查看答案和解析>>

同步練習(xí)冊(cè)答案