化簡(jiǎn):
sin(2π-α)cos(3π+α)cos(
2
-α)
sin(-π+α)sin(3π-α)cos(-α-π)
=
 
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:利用三角函數(shù)的誘導(dǎo)公式化簡(jiǎn)即可.
解答: 解:原式=
-sinα•(-cosα)•(-sinα)
-sinαcosα•(-cosα)
=-1.
故答案為:-1.
點(diǎn)評(píng):本題考查運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握公式是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別為橢圓
x2
3
+y2=1的左、右焦點(diǎn),點(diǎn)A,B在橢圓上,若
F1A
=3
F2B
,則點(diǎn)A的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校共有師生2400人,現(xiàn)用分層抽樣的方法從所有師生中抽取一個(gè)容量為120人的樣本.已知從學(xué)生中抽取的人數(shù)為110人,則該校的教師人數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙C:(x-1)2+y2=1,直線l:kx-y+k=0交⊙C于M、N兩點(diǎn),且
CM
CN
=-
1
2
,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),P(x,y),Q(x′,y′)是橢圓上異于頂點(diǎn)的兩點(diǎn),有下列四個(gè)不等式
①a2+b2≥(x+y)2
1
x2
+
1
y2
≥(
1
a
+
1
b
2;
③4(
x
a
2≤(
b
y
2
xx′
a2
+
yy′
b2
≤1.
其中不等式恒成立的序號(hào)是
 
.(填所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,下列結(jié)論正確的是
 
(填序號(hào))
①存在x0∈R,使得f(x0)=0
②函數(shù)y=f(x)的圖象是中心對(duì)稱圖形
③若x0是函數(shù)y=f(x)的極小值點(diǎn),則函數(shù)y=f(x)在區(qū)間(-∞,x0)上是減函數(shù)
④若f′(x0)=0,則x0是函數(shù)y=f(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4
1
2
+2-2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若U={1,2,3,4},M={1,2},N={2,3},則M∪N是( 。
A、{2}
B、{4}
C、{1,3,4}
D、{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程
x2
2sinθ+6
+
y2
sinθ-2
=1所表示的曲線為(  )
A、焦點(diǎn)在x軸上的橢圓
B、焦點(diǎn)在y軸上的橢圓
C、焦點(diǎn)在x軸上的雙曲線
D、焦點(diǎn)在y軸上的雙曲線

查看答案和解析>>

同步練習(xí)冊(cè)答案