9.已知數(shù)列{an}滿足:an=2an-1+2n+2(n∈N*,n≥2),a1=2,數(shù)列{bn}滿足bn=$\frac{{a}_{n}+2}{{2}^{n}}$(n∈N*).
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)若數(shù)列{an}的前n項和為Sn,求Sn;
(3)己知數(shù)列{cn}滿足cn=$\frac{1}{_{n}_{n+1}}$,且數(shù)列{cn}的前n項和為Tn,若不等式8Tn≤λbn+1對任意的n∈N*恒成立,求實數(shù)λ的取值范圍.

分析 (1)由an=2an-1+2n+2(n∈N*,n≥2),a1=2,變形為:$\frac{{a}_{n}+2}{{2}^{n}}$-$\frac{{a}_{n-1}+2}{{2}^{n-1}}$=1,可得:bn-bn-1=1,即可證明.
(2)由(1)可得:bn=n+1.可得:an=(n+1)•2n-2.利用“錯位相減法”與等比數(shù)列的前n項和公式即可得出.
(3)利用“裂項求和”方法、數(shù)列的單調(diào)性即可得出.

解答 (1)證明:由an=2an-1+2n+2(n∈N*,n≥2),a1=2,
變形為:$\frac{{a}_{n}+2}{{2}^{n}}$-$\frac{{a}_{n-1}+2}{{2}^{n-1}}$=1,
∵數(shù)列{bn}滿足bn=$\frac{{a}_{n}+2}{{2}^{n}}$(n∈N*),
∴bn-bn-1=1,
∴數(shù)列{bn}是等差數(shù)列,首項為2,公差為1.
(2)解:由(1)可得:bn=2+(n-1)=n+1.
∴$\frac{{a}_{n}+2}{{2}^{n}}$=n+1,∴an=(n+1)•2n-2.
設(shè)數(shù)列{(n+1)•2n}的前n項和為An
則An=2×2+3×22+4×23+…+(n+1)•2n
2An=2×22+3×23+…+n•2n+(n+1)•2n+1
∴-An=4+(22+23+…+2n)-(n+1)•2n+1=2+$\frac{2({2}^{n}-1)}{2-1}$-(n+1)•2n+1=(-n)•2n+1,
∴An=n•2n+1
∴Sn=n•2n+1-2n.
(3)解:∵cn=$\frac{1}{_{n}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,
∴數(shù)列{cn}的前n項和為Tn=$(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{1}{2}-\frac{1}{n+2}$.
不等式8Tn≤λbn+1,化為:4$-\frac{8}{n+2}$≤λ(n+2),
∴λ≥$\frac{4n}{(n+2)^{2}}$,
∵$\frac{4n}{(n+2)^{2}}$=$\frac{4}{n+\frac{4}{n}+4}$≤$\frac{1}{2}$,
∵不等式8Tn≤λbn+1對任意的n∈N*恒成立,
∴$λ≥\frac{1}{2}$.
∴實數(shù)λ的取值范圍是$[\frac{1}{2},+∞)$.

點評 本題考查了“錯位相減法”、等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式、數(shù)列的單調(diào)性,考查了推理能力與計算能力,屬于難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.在△ABC中,已知AB=2$\sqrt{3}$,AC=2,∠B=30°,則△ABC的面積是(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$或2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設(shè)直線l過雙曲線x2-y2=1的一個焦點,且與雙曲線相交于A、B兩點,若以AB為直徑的圓與y軸相切,則|AB|的值為( 。
A.1+$\sqrt{2}$B.1+2$\sqrt{2}$C.2+2$\sqrt{2}$D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知f(x)=$\left\{\begin{array}{l}{x+2,x≤-1}\\{{x}^{2},-1<x<2}\\{2x,x≥2}\end{array}\right.$,則它的定義域是R.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,∠B=$\frac{π}{3}$,∠C=$\frac{π}{4}$,BC=8,D是邊BC上一點,且$\overrightarrow{BD}$=$\frac{\sqrt{3}-1}{2}$$\overrightarrow{BC}$,則AD的長為( 。
A.12-4$\sqrt{3}$B.12+4$\sqrt{3}$C.4$\sqrt{3}$-4D.4$\sqrt{3}$+4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知(2x-3)4=${a}_{0}{+a}_{1}x{+a}_{2}{x}^{2}{+a}_{3}{x}^{3}{+a}_{4}{x}^{4}$,求
(Ⅰ)a1+a2+a3+a4
(Ⅱ)${(a}_{0}{{+a}_{2}+a}_{4})^2-{(a}_{1}{+a}_{3})^{2}$.
(Ⅲ)|a1|+|a2|+|a3|+|a4|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.將10個三好名額分到7個班中,每班至少一名,則分法種數(shù)為( 。
A.A${\;}_{10}^{7}$B.C${\;}_{10}^{7}$C.84D.63

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知i是虛數(shù)單位,則$\frac{3-i}{i}$( 。
A.-3+iB.-1+3iC.-3-iD.-1-3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知a為實數(shù),函數(shù)f(x)=alnx+x2-4x.
(Ⅰ)是否存在實數(shù)a,使得f(x)在x=1處取極值?證明你的結(jié)論;
(Ⅱ)若函數(shù)f(x)在[2,3]上存在單調(diào)遞增區(qū)間,求實數(shù)a的取值范圍;
(Ⅲ)設(shè)g(x)=(a-2)x,若存在x0∈[$\frac{1}{e}$,e],使得f(x0)≤g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案