17.命題“p:?x∈R,x2+2x+a≤0”的否定形式為?x∈R,x2+2x+a>0.

分析 利用特稱(chēng)命題的否定是全稱(chēng)命題,寫(xiě)出結(jié)果即可.

解答 解:因?yàn)樘胤Q(chēng)命題的否定是全稱(chēng)命題,所以命題“p”的否定形式為:?x∈R,x2+2x+a>0.
故答案為:?x∈R,x2+2x+a>0.

點(diǎn)評(píng) 本題考查命題的否定,特稱(chēng)命題與全稱(chēng)命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.實(shí)數(shù)x,y,k滿(mǎn)足$\left\{\begin{array}{l}x+y-3≥0\\ x-y+1≥0\\ x≤k\end{array}\right.$,z2=x2+y2,若z2的最大值為13,則k的值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知直線l經(jīng)過(guò)兩條直線2x+y-8=0和x-2y+1=0的交點(diǎn),且平行于直線4x-3y-7=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=x2-3x的定義域?yàn)閧1,2,3},則f(x)的值域?yàn)閧-2,0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.對(duì)任意兩個(gè)非零的平面向量$\overrightarrow α$,$\overrightarrow β$,定義$\overrightarrow α$和$\overrightarrow β$之間的新運(yùn)算⊙:$\overrightarrow α⊙\overrightarrow β=\frac{\overrightarrow α•\overrightarrow β}{\overrightarrow β•\overrightarrow β}$.已知非零的平面向量$\overrightarrow a,\overrightarrow b$滿(mǎn)足:$\overrightarrow a⊙\overrightarrow b$和$\overrightarrow b⊙\overrightarrow a$都在集合$\{x|x=\frac{{\sqrt{3}k}}{3},k∈{Z}\}$中,且$|\overrightarrow a|≥|\overrightarrow b|$.設(shè)$\overrightarrow a$與$\overrightarrow b$的夾角$θ∈(\frac{π}{6},\frac{π}{4})$,則$(\overrightarrow a⊙\overrightarrow b)sinθ$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)實(shí)數(shù)x,y滿(mǎn)足$\left\{\begin{array}{l}0≤x≤1\\ 0≤y≤2\\ 2y-x≥1\end{array}\right.$,z=2y-2x+4的最大值為m,最小值為n,則m+n=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若集合 A={-2,-1,0,1,2},B={x|x2>1},則 A∩B=( 。
A.{x|x<-1或x>1}B.{-2,2}C.{2}D.{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.四川省教育廳為確保我省高考使用全國(guó)卷平穩(wěn)過(guò)渡,擬召開(kāi)高考命題調(diào)研會(huì),廣泛征求參會(huì)的教研員和一線教師的意見(jiàn),其中教研員有80人,一線教師有100人,若采用分層抽樣方法從中抽取9人發(fā)言,則應(yīng)抽取的一線教師的人數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知|$\overrightarrow{m}$|=2,|$\overrightarrow{n}$|=3,且$\overrightarrow{m}$•$\overrightarrow{n}$=-2$\sqrt{3}$,則向量$\overrightarrow{m}$與$\overrightarrow{n}$的夾角θ的余弦值為-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案