復(fù)數(shù)z=i•(1+i)(i為虛數(shù)單位)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于第
 
象限.
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由i(1+i)=-1+i,由此能求出復(fù)數(shù)i(1+i)的復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限.
解答: 解:∵i(1+i)=i+i2=-1+i,
∴i(1+i)即復(fù)數(shù)為-1+i,
∴-1+i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)(-1,1)位于第二象限.
故答案為:二.
點(diǎn)評(píng):本題考查復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算,解題時(shí)要認(rèn)真審題,熟練掌握共軛復(fù)數(shù)的概念,合理運(yùn)用復(fù)數(shù)的幾何意義進(jìn)行解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2ax+3,當(dāng)x∈(0,2]時(shí),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某汽車租憑公司的月收益y元與每輛車的月租金x元之間的關(guān)系為y=-
x2
50
+162x-21000,則當(dāng)每輛車的租金為多少元時(shí),租憑公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若在區(qū)間[-5,5]內(nèi)任取一個(gè)實(shí)數(shù)a,則使直線x+y+a=0與圓(x-1)2+(y+2)2=2有公共點(diǎn)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知A=60°,b=1,△ABC的面積為
3
,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線x+my+3m=0被圓x2+y2=r2(r>0)所截得的最短弦長(zhǎng)為8,則r=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

157°30′=
 
 rad.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下四個(gè)命題:
①設(shè)p:a2+a≠0,q:a≠0,則p是q的充分不必要條件;
②過(guò)點(diǎn)(-1,2)且在x軸和y軸上的截距相等的直線方程是x+y-1=0;
③若函數(shù)y=f(x)與y=g(x)的圖象關(guān)于直線y=x對(duì)稱,則函數(shù)y=f(2x)與y=
1
2
g(x)的圖象也關(guān)于直線y=x對(duì)稱;
④若直線xsinα+ycosα+1=0和直線xcosα-
1
2
y-1=0垂直,則角α=kπ+或α=2kπ+
π
6
(k∈Z).
其中正確命題的序號(hào)為
 
.(把你認(rèn)為正確的命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓x2+y2=4與圓x2+y2+(a-1)y=0(a>0)的公共弦長(zhǎng)為2
3
,則a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案