已知A(-1,0),B(1,0),動(dòng)點(diǎn)P(x,y)滿足:|PA|+|PB|=4,則點(diǎn)P的軌跡的方程是
 
考點(diǎn):軌跡方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)P到兩個(gè)定點(diǎn)A、B的距離和等于定值,可得P的軌跡是以A、B為焦點(diǎn)的橢圓,結(jié)合橢圓的基本概念即可求出動(dòng)點(diǎn)P的軌跡方程.
解答: 解:由|PA|+|PB|=4>|AB|,結(jié)合橢圓的定義有:動(dòng)點(diǎn)P的軌跡是以A(-1,0),B(1,0)為焦點(diǎn)的橢圓.
∵c=1,a=2,
∴b=
3
,
∴點(diǎn)P的軌跡的方程是
x2
4
+
y2
3
=1

故答案為:
x2
4
+
y2
3
=1
點(diǎn)評(píng):本題給出動(dòng)點(diǎn)滿足的條件,求動(dòng)點(diǎn)的軌跡方程,著重考查了橢圓的定義,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“sinθ•cosθ>0”是“θ是第一象限角”的( 。
A、充分必要條件
B、充分非必要條件
C、必要非充分條件
D、非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=sin(
1
2
x+φ)(|φ|<
π
2
)的圖象(部分)如圖,則φ的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0≤x≤2,則函數(shù)y=4x-3×2x-4的最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2
1+x
1-x

(1)判斷函數(shù)f(x)的奇偶性,并加以證明;
(2)求使f(x)>0時(shí)的x取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知箱中有4個(gè)白球和3個(gè)黑球,
(Ⅰ)有放回的任取兩次,求都是白球的概率;
(Ⅱ)無(wú)放回的任取兩次,求在第一次取得黑球的前提下,第二次取得白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角邊長(zhǎng)為1,的等腰直角三角形ABC中,D為斜邊AB的中點(diǎn),則
CD
CA
等于( 。
A、
1
4
B、
2
2
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x-2,那么不等式f(x)<0的解集是(  )
A、(0,+∞)
B、(-2,2)
C、(-∞,-2)∪(2,+∞)
D、(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二次函數(shù)f(x)滿足以下條件①f(x-1)=f(5-x)②最小值為-8③f(1)=-6
(1)求f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間(-1,4]上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案