已知函數(shù)f(x)=log2
1+x
1-x

(1)判斷函數(shù)f(x)的奇偶性,并加以證明;
(2)求使f(x)>0時(shí)的x取值范圍.
考點(diǎn):對(duì)數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)先求定義域,再運(yùn)用定義判斷證明,(2)根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性得
1+x
1-x
>1,解不等式即可得到答案.
解答: 解:(1)由
1+x
1-x
>0得x∈(-1,1),
定義域關(guān)于關(guān)于原點(diǎn)對(duì)稱;
又f(-x)=log
 
1-x
1+x
2
=-log
 
1+x
1-x
2
=-f(x),
所以f(x)是奇函數(shù);
(2)由log
 
1+x
1-x
2
>0,得
1+x
1-x
>1,
1+x
1-x
-1>0,即
2x
1-x
>0,
x(x-1)<0,
解得:0<x<1,
故使f(x)>0時(shí)的x取值范圍為(0,1)
點(diǎn)評(píng):本題考查了對(duì)數(shù)函數(shù)的定義,性質(zhì),運(yùn)用解決不等式問(wèn)題,難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(-3,0)且傾斜角為30°的直線和曲線
x=t+
1
t
y=t-
1
t
(t為參數(shù))相交于A、B兩點(diǎn).則線段AB的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)某幾何體三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn(n∈N+),且an=2n+λ,若數(shù)列{Sn}在n≥7時(shí)為遞增數(shù)列,則實(shí)數(shù)λ的取值范圍為( 。
A、(-15,+∞)
B、[-15,+∞)
C、[-16,+∞)
D、(-16,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益(單位:元)滿足R(x)=
400x-
1
2
x2,0≤x≤400
80000,x>400
其中x(單位:臺(tái))是儀器的月產(chǎn)量.
(1)將利潤(rùn)表示為月產(chǎn)量的函數(shù)f(x);
(2)當(dāng)月產(chǎn)量為何值時(shí),公司利潤(rùn)最大?最大為多少元?(總收益=總成本+利潤(rùn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(-1,0),B(1,0),動(dòng)點(diǎn)P(x,y)滿足:|PA|+|PB|=4,則點(diǎn)P的軌跡的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)fx)=tan(2x+
π
4
).
(1)求fx)的定義域與最小正周期;
(2)設(shè)α∈(0,
π
4
),若f(
α
2
=2cos 2α,求α的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
(a-3)x+5,x≤1
2a
x
,
  x>1
對(duì)任意x1,x2∈R,(x1-x2)(f(x1)-f(x2))<0,則a的取值范圍是( 。
A、(0,3)
B、(0,3]
C、(0,2)
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

偶函數(shù)f(x)的定義域?yàn)镽,若f(-x+1)=f(x+1),且f(1)=1,f(0)=0則f(4)+f(5)=(  )
A、2B、-1C、0D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案