【題目】將函數(shù)圖象上所有點的橫坐標縮短為原來的,縱坐標不變,再向右平移個單位長度,得到函數(shù)的圖象,則下列說法正確的是( )
A. 函數(shù)的一條對稱軸是
B. 函數(shù)的一個對稱中心是
C. 函數(shù)的一條對稱軸是
D. 函數(shù)的一個對稱中心是
【答案】C
【解析】
利用誘導公式、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的圖象的對稱性,判斷各個選項是否正確,從而得出結(jié)論.
將函數(shù)圖象上所有點的橫坐標縮短為原來的,
可得y=2sin(2x)的圖象,
然后縱坐標不變,再向右平移個單位長度,
得到函數(shù)y=g(x)=2sin(2x)=2cos2x的圖象,
令x,求得g(x)=0,
可得(,0)是g(x)的一個對稱中心,故排除A;
令x,求得g(x)=﹣1,
可得x是g(x)的圖象的一條對稱軸,故排除B,故C正確;
令x,求得g(x),可得x不是g(x)的圖象的對稱中心,故排除D,
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是(是參數(shù)),
(Ⅰ)寫出直線的普通方程和曲線的直角坐標方程;
(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,曲線任一點為,求點直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.
(1)求E的方程;
(2)設(shè)過點A的動直線l與E相交于P,Q兩點.當△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知不等式.
(1)是否存在實數(shù)m,使不等式對任意恒成立?并說明理由.
(2)若不等式對任意恒成立,求實數(shù)m的取值范圍.
(3)若對于,不等式恒成立,求實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是正方形,直線平面,且.
(1)求二面角的大小;
(2)設(shè)E為棱的中點,在的內(nèi)部或邊上是否存在一點,使平面?若存在,求出點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且橢圓上一點P的坐標為.
(1)求橢圓M的方程;
(2)設(shè)橢圓的右頂點為C,不經(jīng)過點C的直線l與橢圓M交于A,B兩點,且以線段AB為直徑的圓過點C,
①證明:直線l過定點,并求出該定點坐標;
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖在四面體中,是邊長為2的等邊三角形,為直角三角形,其中為直角頂點,.分別是線段上的動點,且四邊形為平行四邊形.
(1)求證:平面,平面;
(2)試探究當二面角從0°增加到90°的過程中,線段在平面上的投影所掃過的平面區(qū)域的面積;
(3)設(shè),且為等腰三角形,當為何值時,多面體的體積恰好為?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com