19.函數(shù)f(x)=|x|-ax-1僅有一個負零點,則a的取值范圍是( 。
A.(-∞,1)B.(-∞,1]C.(1,+∞)D.[1,+∞)

分析 轉(zhuǎn)化函數(shù)的零點為方程的根,利用函數(shù)的圖象結(jié)合函數(shù)的性質(zhì),推出結(jié)果即可.

解答 解:函數(shù)f(x)=|x|-ax-1僅有一個負零點,就是方程|x|=ax+1僅有一個負根,即函數(shù)y=|x|與y=ax+1只有一個x<0時的交點.
如圖:
由圖象可知a≥1時,函數(shù)f(x)=|x|-ax-1僅有一個負零點,
故選:D.

點評 本題主要考查了函數(shù)的圖象和圖象變化及數(shù)形結(jié)合思想,考查轉(zhuǎn)化思想以及計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=loga(a-ax)(a>0且a≠1).
(1)求該函數(shù)的定義域和值域;
(2)判斷該函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知曲線C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$ (t為參數(shù)),C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù)).
(1)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點P對應的參數(shù)為t=$\frac{π}{2}$,Q為C2上的動點,求PQ中點M到直線$\left\{\begin{array}{l}{x=3+\frac{2\sqrt{5}}{5}t}\\{y=-2+\frac{\sqrt{5}}{5}t}\end{array}\right.$(t為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,已知直三棱柱ABC-A1B1C1的側(cè)面ACC1A1是正方形,AC=BC,點O是側(cè)面ACC1A1的中心,∠ACB=$\frac{π}{2}$,M在棱BC上,且MC=2BM=2.
(1)證明BC⊥AC1;
(2)求OM的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知集合A={y|y=x2-2x+2},B={(x,y)|y=x2-2x+2},則下列各式中正確的個數(shù)是(  )
(1)A=B;(2)A?B;(3)A∈B;(4)A?B;(5)B∈A.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ   ①
sin(α-β)=sinαcosβ-cosαsinβ   ②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ  ③
令α+β=A,α-β=B 有α=$\frac{A+B}{2}$,β=$\frac{A-B}{2}$
代入③得 sinA+sinB=2sin$\frac{A+B}{2}$cos$\frac{A-B}{2}$.
(Ⅰ)類比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:
cosA-cosB=2sin$\frac{A+B}{2}$sin$\frac{A-B}{2}$.;
(Ⅱ)在△ABC中,求T=sinA+sinB+sinC+sin$\frac{π}{3}$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知A(-1,0),B(1,0),圓C:x2-2kx+y2+2y-3k2+15=0.
(Ⅰ)若過B點至少能作一條直線與圓C相切,求k的取值范圍.
(Ⅱ)當k=$\frac{\sqrt{21}}{2}$時,圓C上存在兩點P1,P2滿足∠APiB=90°(i=1,2),求|P1P2|的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=x2-2x+mlnx+1,其中m為常數(shù).
(1)若m≥$\frac{1}{2}$,證明:函數(shù)f(x)在定義域上是增函數(shù);
(2)若函數(shù)f(x)有唯一極值點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知偶函數(shù)f(x)=x2+bx+c的圖象過點(2,5),設(shè)g(x)=(x+a)f(x).
(1)求f(x)的解析式;
(2)若當x=-1時,函數(shù)g(x)取得極值,確定g(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習冊答案