y=|sinx|+|cosx|的最小正周期為( 。
A、
π
4
B、
π
2
C、π
D、2π
考點(diǎn):三角函數(shù)的周期性及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用,三角函數(shù)的圖像與性質(zhì)
分析:首先利用恒等變換進(jìn)行三角函數(shù)變形,然后利用誘導(dǎo)公式進(jìn)行變換,根據(jù)f(x)=f(x+
π
2
),確定最小正周期.
解答: 解:由于:f(x)=|sinx|+|cosx|=|-sinx|+|cosx|=|cos(x+
π
2
)|+|sin(x+
π
2
)|=f(x+
π
2

∴f(x)=|sinx|+|cosx|的最小正周期為
π
2

故選:B
點(diǎn)評:本題考查的知識點(diǎn):三角函數(shù)的恒等變換,誘導(dǎo)公式,f(x)=f(x+
π
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下命題:
①i是虛數(shù)單位,復(fù)數(shù)
2i
1+i
的實(shí)部為1;
②命題p:“?x∈R+,sinx+
1
sinx
≥2”是真命題;
③已知線性回歸方程為
?
y
=3+2x,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位;
④把函數(shù)y=3sin(2x+
π
3
)的圖象按向量
n
=(
π
3
,1)平移后得到y(tǒng)=1+3sin2x的圖象;
⑤已知
2
2-4
+
6
6-4
=2,
5
5-4
+
3
3-4
=2,
7
7-4
+
1
1-4
=2,
10
10-4
+
-2
-2-4
=2,依照以上各式的規(guī)律,得到一般性的等式為
n
n-4
+
8-n
(8-n)-4
=2,(n≠4).
則正確命題的序號為
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosβ=-
1
3
,sin(α+β)=
7
9
,且α∈(0,
π
2
),β∈(
π
2
,π),求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinxcosx+2
3
sin2x-
3
,將y=f(x)的圖象向左平移
π
6
個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(x)在[a,b]上至少含有1012個(gè)零點(diǎn),則b-a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin165°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一段“三段論”推理:對于可導(dǎo)函數(shù)f(x),若f(x)在區(qū)間(a,b)上是增函數(shù),則f′(x)>0對x∈(a,b)恒成立,因?yàn)楹瘮?shù)f(x)=x3在R上是增函數(shù),所以f(x)=3x2>0對x∈R恒成立.以上推理中(  )
A、大前提錯(cuò)誤
B、小前提錯(cuò)誤
C、推理形式錯(cuò)誤
D、推理正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列計(jì)算正確的有( 。﹤(gè)
①(-7)×6
a
=-42
a
;②(
a
-2
b
)+2
a
+2
b
=3
a
;③(
a
+
b
)-(
a
-
b
)=0.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)λ變化時(shí),直線λx-y+2+λ=0經(jīng)過的定點(diǎn)是( 。
A、(1,2)
B、(-1,2)
C、(1,-2)
D、(-1,-2)

查看答案和解析>>

同步練習(xí)冊答案