分析 用x表示出四棱錐的側(cè)棱長(zhǎng)和對(duì)角線(xiàn)長(zhǎng),計(jì)算出棱錐的高,得到V(x)的解析式,利用導(dǎo)數(shù)與極值的關(guān)系求出最大體積.
解答 解:棱錐的側(cè)棱長(zhǎng)為l=$\sqrt{{5}^{2}+{x}^{2}}$=$\sqrt{25+{x}^{2}}$,棱錐的底面對(duì)角線(xiàn)長(zhǎng)為10-2x,顯然0<x<5.
∴棱錐的高h(yuǎn)=$\sqrt{{l}^{2}-(5-x)^{2}}$=$\sqrt{10x}$,棱錐的底面邊長(zhǎng)為$\frac{10-2x}{\sqrt{2}}$=$\sqrt{2}$(5-x).
∴棱錐的體積V(x)=$\frac{1}{3}$×($\sqrt{2}$(5-x))2×$\sqrt{10x}$=$\frac{2\sqrt{10}}{3}(5-x)^{2}\sqrt{x}$.
∴V′(x)=$\frac{2\sqrt{10}}{3}$•[2(x-5)$\sqrt{x}$+(x-5)2•$\frac{\sqrt{x}}{2x}$]=$\frac{2\sqrt{10}}{3}$•(x-5)•$\sqrt{x}$•$\frac{5x-5}{2x}$.
令V′(x)=0,得x=1,
當(dāng)0<x<1時(shí),V′(x)>0,當(dāng)1<x<5時(shí),V′(x)<0.
∴當(dāng)x=1時(shí),V(x)取得最大值,最大值為V(1)=$\frac{32\sqrt{10}}{3}$.
點(diǎn)評(píng) 本題以折疊圖形為依托,考查空間幾何體的體積的求法,通過(guò)函數(shù)的對(duì)數(shù)求法函數(shù)的值的方法,考查空間想象能力與計(jì)算能力;解題中注意函數(shù)的定義域,導(dǎo)數(shù)的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①②③ | B. | ②③④ | C. | ②③ | D. | ①③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com