分析 (1)先化簡(jiǎn)f(x),求出定義域?yàn)镽,再用定義證明f(x)是定義域R上的減函數(shù);
(2)根據(jù)f(x)在定義域R上是減函數(shù),求出-1<f(x)<1,即得f(x)的值域.
解答 解:(1)證明:∵f(x)=$\frac{{a}^{x}-{a}^{-x}}{{a}^{x}+{a}^{-x}}$=$\frac{{a}^{2x}-1}{{a}^{2x}+1}$=1-$\frac{2}{{a}^{2x}+1}$(0<a<1),
且a2x+1≠0,∴x∈R;
任取x1、x2∈R,且x1<x2,
則f(x1)-f(x2)=(1-$\frac{2}{{a}^{{2x}_{1}}+1}$)-(1-$\frac{2}{{a}^{{2x}_{2}}+1}$)
=$\frac{2}{{a}^{{2x}_{2}}+1}$-$\frac{2}{{a}^{{2x}_{1}}+1}$
=$\frac{2{(a}^{{2x}_{1}}{-a}^{{2x}_{2}})}{{(a}^{{2x}_{1}}+1){(a}^{{2x}_{2}}+1)}$;
∵0<a<1,且x1<x2,
∴${a}^{{2x}_{1}}$>${a}^{{2x}_{2}}$,∴2(${a}^{{2x}_{1}}$-${a}^{{2x}_{2}}$)>0,且(${a}^{{2x}_{1}}$+1)(${a}^{{2x}_{2}}$+1)>0;
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴f(x)是定義域R上的減函數(shù);
(2)∵f(x)=1-$\frac{2}{{a}^{2x}+1}$是定義域R上的減函數(shù),且0<a<1;
∴當(dāng)x→-∞時(shí),a2x→+∞,$\frac{2}{{a}^{2x}+1}$→0,∴f(x)<1;
當(dāng)x→+∞時(shí),a2x→0,$\frac{2}{{a}^{2x}+1}$→2,∴f(x)>-1;
∴f(x)的值域是(-1,1).
點(diǎn)評(píng) 本題考查了利用定義判斷函數(shù)的單調(diào)性問(wèn)題,也考查了利用函數(shù)的單調(diào)性求值域的問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com