A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
分析 根據(jù)幾何概型概率公式,分別求出正方形面積和陰影部分的面積,利用面積比解得.
解答 解:由題意,本題是幾何概型的概率問題,正方形的面積為1,
陰影部分的面積為${∫}_{0}^{1}$($\sqrt{x}$-x)dx=($\frac{2}{3}{x}^{\frac{3}{2}}$-$\frac{1}{2}$x2)|${\;}_{0}^{1}$=$\frac{2}{3}-\frac{1}{2}$=$\frac{1}{6}$,
由幾何概型的概率公式得,
點落在陰影部分的概率為P=$\frac{1}{6}$.
故選D.
點評 本題考查了幾何概型的計算問題,涉及定積分在求面積中的應(yīng)用,關(guān)鍵是正確算出陰影部分的面積,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{5π}{6}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | $-\frac{{2\sqrt{2}}}{3}$ | D. | $\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 89 | B. | 44 | C. | $44\frac{1}{2}$ | D. | $44+\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com