等差數(shù)列滿足,設(shè)是數(shù)列的前n項(xiàng)和,(nÎ N*)

(1)求

(2)比較f(n+1)與f(n)的大。

(3)若對一切大于1的正整數(shù)n,其函數(shù)值都小于0,那么a,b滿足什么條件?

答案:略
解析:

解:(1)成等差數(shù)列,∴.∴

(2),

.∴f(n1)f(n)

(3),且數(shù)列f(n)是遞增數(shù)列,又n1,∴當(dāng)且僅當(dāng)n=2時,f(n)取得最小值.∴

.∴

.∴


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列an中,公差d>0,其前n項(xiàng)和為Sn,且滿足a2•a3=45,a1+a4=14.
(1)求數(shù)列an的通項(xiàng)公式;
(2)設(shè)由bn=
Sn
n+c
(c≠0)構(gòu)成的新數(shù)列為bn,求證:當(dāng)且僅當(dāng)c=-
1
2
時,數(shù)列bn是等差數(shù)列;
(3)對于(2)中的等差數(shù)列bn,設(shè)cn=
8
(an+7)•bn
(n∈N*),數(shù)列cn的前n項(xiàng)和為Tn,現(xiàn)有數(shù)列f(n),f(n)=
2bn
an-2
-Tn
(n∈N*),
求證:存在整數(shù)M,使f(n)≤M對一切n∈N*都成立,并求出M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)已知等差數(shù)列{an}中,公差d>0,其前n項(xiàng)和為Sn,且滿足a2•a3=45,a1=a4=14.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)由bn=
Sn
n+c
(c≠0)構(gòu)成的新數(shù)列為{bn},求證:當(dāng)且僅當(dāng)c=-
1
2
時,數(shù)列{bn}是等差數(shù)列;
(3)對于(2)中的等差數(shù)列{bn},設(shè)cn=
8
(an+7)•bn
(n∈N*),數(shù)列{cn}的前n項(xiàng)和為Tn,現(xiàn)有數(shù)列{f(n)},f(n)=Tn•(an+3-
8
bn
)•0.9n(n∈N*),是否存在n0∈N*,使f(n)≤f(n0)對一切n∈N*都成立?若存在,求出n0的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 (08年揚(yáng)州中學(xué))  如果有窮數(shù)列為正整數(shù))滿足條件,…,,即),我們稱其為“對稱數(shù)列”.例如,由組合數(shù)組成的數(shù)列就是“對稱數(shù)列”.

(1)設(shè)是項(xiàng)數(shù)為7的“對稱數(shù)列”,其中是等差數(shù)列,且,.依次寫出的每一項(xiàng);

(2)設(shè)是項(xiàng)數(shù)為(正整數(shù))的“對稱數(shù)列”,其中是首項(xiàng)為,公差為的等差數(shù)列.記各項(xiàng)的和為.當(dāng)為何值時,取得最大值?并求出的最大值;

    (3)對于確定的正整數(shù),寫出所有項(xiàng)數(shù)不超過的“對稱數(shù)列”,使得依次是該數(shù)列中連續(xù)的項(xiàng);當(dāng)時,求其中一個“對稱數(shù)列”前項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

上海市徐匯區(qū)2011屆高三下學(xué)期學(xué)習(xí)能力診斷卷(數(shù)學(xué)理).doc
      <menuitem id="moss7"></menuitem>

       

      (本題滿分18分)第(1)小題滿分6分,第(2)小題滿分6分,第(3)小題滿分6分。

      設(shè)等比數(shù)列的首項(xiàng)為,公比為為正整數(shù)),且滿足是與的等差中項(xiàng);數(shù)列滿足。

      求數(shù)列的通項(xiàng)公式;

      試確定實(shí)數(shù)的值,使得數(shù)列為等差數(shù)列;

      當(dāng)數(shù)列為等差數(shù)列時,對每個正整數(shù),在和之間插入個2,得到一個新數(shù)列。設(shè)是數(shù)列的前項(xiàng)和,試求滿足的所有正整數(shù)。

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來源:2010年上海市閔行區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

      已知等差數(shù)列{an}中,公差d>0,其前n項(xiàng)和為Sn,且滿足a2•a3=45,a1=a4=14.
      (1)求數(shù)列{an}的通項(xiàng)公式;
      (2)設(shè)由bn=(c≠0)構(gòu)成的新數(shù)列為{bn},求證:當(dāng)且僅當(dāng)c=-時,數(shù)列{bn}是等差數(shù)列;
      (3)對于(2)中的等差數(shù)列{bn},設(shè)cn=(n∈N*),數(shù)列{cn}的前n項(xiàng)和為Tn,現(xiàn)有數(shù)列{f(n)},f(n)=Tn•(an+3-)•0.9n(n∈N*),是否存在n∈N*,使f(n)≤f(n)對一切n∈N*都成立?若存在,求出n的值,若不存在,請說明理由.

      查看答案和解析>>

      同步練習(xí)冊答案