分析 (1)設(shè)PF1、PF2與圓的切點分別為R、S,推導(dǎo)出點P的軌跡是以A為項點,2a為實軸,F(xiàn)1、F2為焦點的雙曲線的右半支(項點A除外),由此能求出曲線C的方程,由方程組$\left\{\begin{array}{l}{{x}^{2}-{y}^{2}={a}^{2}}\\{mx-ny={a}^{2}}\end{array}\right.$,得(m2-n2)y2-2na2y+m2a2-a4=0,從而得到y(tǒng)2-2ny+m2-a2=0,由此利用根的判別式得到直線l:mx-ny=a2與曲線C相切.
(2)設(shè)M(x1,y1),N(x2,y2),則切線l1的方程為${x}_{1}x-{y}_{1}y={a}^{2}$,切線l2的方程為${x}_{2}x-{y}_{2}y={a}^{2}$,求出直線OE的方程為y=$\frac{{x}_{1}-{x}_{2}}{{y}_{1}-{y}_{2}}x$,由此能推導(dǎo)出直線OE恒過MN的中點G.
解答 解:(1)如圖,設(shè)PF1、PF2與圓的切點分別為R、S,
則有|PR|=|PS|,|RF1|=|AF1|,|SF2|=|AF2|,
∴|PF1|-|PF2|=|AF1|-|AF2|=2a,
∴點P的軌跡是以A為項點,2a為實軸,F(xiàn)1、F2為焦點的雙曲線的右半支(項點A除外),
設(shè)雙曲線的虛半軸為b,則c=$\sqrt{2}a$,b2=c2-a2=2a2-a2=a2,
∴曲線C的方程為x2-y2=a2(x>a),
∵D(m,n)為曲線C上的點,
∴m2-n2=a2,且m>a,
由方程組$\left\{\begin{array}{l}{{x}^{2}-{y}^{2}={a}^{2}}\\{mx-ny={a}^{2}}\end{array}\right.$,消去x,得:
(m2-n2)y2-2na2y+m2a2-a4=0,
將m2-n2=a2代入,得:
a2y2-2na2y+m2a2-a4=0,
即y2-2ny+m2-a2=0,①
方程①的判別式:
△=(-2n)2-4(m2-a2)=4(n2-m2-a2)=4(a2-a2)=0,
∴方程①有重根,
∴直線l:mx-ny=a2與曲線C相切.
(2)設(shè)M(x1,y1),N(x2,y2),由(1)得:
切線l1的方程為${x}_{1}x-{y}_{1}y={a}^{2}$,②
切線l2的方程為${x}_{2}x-{y}_{2}y={a}^{2}$,③
設(shè)l1與l2的交點為E(x0,y0),分別代入②③,得:
$\left\{\begin{array}{l}{{x}_{1}{x}_{0}-{y}_{1}{y}_{0}={a}^{2}}\\{{x}_{2}{x}_{0}-{y}_{2}{y}_{0}={a}^{2}}\end{array}\right.$,兩式相減,得:(x1-x2)x0-(y1-y2)y0=0,
由雙曲線性質(zhì),得x0≠0,
∴直線OE的斜率${k}_{0}=\frac{{y}_{0}}{{x}_{0}}=\frac{{x}_{1}-{x}_{2}}{{y}_{1}-{y}_{2}}$,
∴直線OE的方程為y=$\frac{{x}_{1}-{x}_{2}}{{y}_{1}-{y}_{2}}x$,④
另一方面,點M,N的坐標分別滿足${{x}_{1}}^{2}-{{y}_{1}}^{2}={a}^{2}$和${{x}_{2}}^{2}-{{y}_{2}}^{2}={a}^{2}$,
相減,得:$({{x}_{1}}^{2}-{{x}_{2}}^{2})-({{y}_{1}}^{2}-{{y}_{2}}^{2})=0$,
∴$\frac{{y}_{1}+{y}_{2}}{2}=\frac{{x}_{1}-{x}_{2}}{{y}_{1}-{y}_{2}}•\frac{{x}_{1}+{x}_{2}}{2}$,⑤
由④⑤知,MN的中點G($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$)在直線OE上,
∴直線OE恒過MN的中點G.
點評 本題考查直線與曲線的位置的判斷,考查直線是否過線段中點的探究,是中檔題,解題時要認真審題,注意橢圓性質(zhì)、切線方程、點差法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1500 | B. | 1700 | C. | 4500 | D. | 8000 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | -4 | D. | -8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{15}{4}$ | C. | $\frac{17}{4}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)在(1,2)或[2,3)內(nèi)有零點 | B. | 函數(shù)f(x)在(3,5)內(nèi)無零點 | ||
C. | 函數(shù)f(x)在(2,5)內(nèi)有零點 | D. | 函數(shù)f(x)在(2,4)內(nèi)不一定有零點 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com