A. | 4 | B. | 8 | C. | -4 | D. | -8 |
分析 根據(jù)函數(shù)的條件,判斷函數(shù)的周期,利用函數(shù)的奇偶性和周期性即可得到結(jié)論.
解答 解:∵f(x+4)=-f(x),
∴f(x+8)=-f(x+4)=f(x),
即函數(shù)的周期是8,
且f(x+4)=-f(x)=f(-x),
則函數(shù)的對稱軸為$\frac{x+4-x}{2}$=2,
作出函數(shù)f(x)的 簡圖,
若方程f(x)=m(m>0)在區(qū)間[-8,8]上有四個不同的根x1,x2,x3,x4,
則四個根分別關(guān)于x=2和x=-6對稱,
不妨設(shè)x1<x2<x3<x4,
則x1+x2=-12,x3+x4=4,
則x1+x2+x3+x4=-12+4=-8,
故選:D.
點評 本題主要考查方程根的應(yīng)用,根據(jù)條件結(jié)合函數(shù)的周期性和奇偶性,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | cos2θ≤x≤1 | B. | -1≤x≤-cos2θ | C. | -cos2θ≤x≤1 | D. | -1≤x≤cos2θ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\sqrt{2},0$) | B. | (2,0) | C. | ($\sqrt{6},0$) | D. | ($\sqrt{10},0$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{\sqrt{5}}}{10}$ | C. | $\frac{{\sqrt{10}}}{10}$ | D. | $\frac{{\sqrt{10}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com