Processing math: 42%
13.如圖,直線PA與圓切于點(diǎn)A,過P作直線與圓交于C、D兩點(diǎn),點(diǎn)B在圓上,且∠PAC=∠BCD.
(1)求證:∠PCA=∠BAC;
(2)若PC=2AB=2,求APBC

分析 (1)證明∠ABC=∠BCD,即可證明AB∥PD,可得:∠PCA=∠BAC;
(2)證明△PAC~△CBA,則PCAC=ACAB=PABC,即可求APBC

解答 (1)證明:∵直線PA與圓切于點(diǎn)A,∴∠PAC=∠ABC,…(2分)
∵∠PAC=∠BCD,∴∠ABC=∠BCD,…(3分)
∴AB∥PD,…(4分)
∴∠PCA=∠BAC…(5分)
(2)解:∵∠PCA=∠BAC,∠PAC=∠ABC,
∴△PAC~△CBA,則PCAC=ACAB=PABC,…(7分)
∵PC=2AB=2,∴AC2=AB•PC=2,即AC=2,…(9分)
APBC=ACAB=2…(10分)

點(diǎn)評 本題考查圓的切線的性質(zhì),考查三角形相似的判定,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時,不等式f(x)+xf′(x)<0成立,若a=(0.33)f(0.33),b=(logπ3)f(logπ3),c=(log319)f(log319),則a,b,c間的大小關(guān)系是(  )
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知點(diǎn)A(-2,-1),B(1,-5),點(diǎn)P是圓C:(x-2)2+(y-1)2=4上的動點(diǎn),則△PAB面積的最大值與最小值之差為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線x2a2-y22=1的一條漸近線過點(diǎn)(2,1),則此雙曲線的一個焦點(diǎn)坐標(biāo)是( �。�
A.20B.(2,0)C.60D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=Asin(2x+φ)(|φ|≤\frac{π}{2},A>0)部分圖象如圖所示,且f(a)=f(b)=0,對不同的x1,x2∈[a,b],若f(x1)=f(x2),有f(x1+x2)=\sqrt{3},則( �。�
A.f(x)在(-\frac{5π}{12},\frac{π}{12})上是減函數(shù)B.f(x)在(-\frac{5π}{12}\frac{π}{12})上是增函數(shù)
C.f(x)在(\frac{π}{3},\frac{5π}{6})上是減函數(shù)D.f(x)在(\frac{π}{3}\frac{5π}{6})上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系中,已知△PF1F2的兩個頂點(diǎn)為F1(-\sqrt{2}a,0),F(xiàn)2\sqrt{2}a,0)(a>0),頂點(diǎn)P在曲線C上運(yùn)動,△PF1F2的內(nèi)切圓與x軸的切點(diǎn)為A,滿足|AF1|-|AF2|=2a.
(1)設(shè)D(m,n)為曲線C上一點(diǎn),試判斷直線l:mx-ny=a2與曲線C的位置關(guān)系;
(2)過曲線C上任意兩個不同點(diǎn)M,N分作C的切線l1,l2,若l1與l2的交點(diǎn)為E,試探究:對于任意的正實(shí)數(shù)a,直線OE(O是原點(diǎn))是否經(jīng)過MN的中點(diǎn)G?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求值:
(1)(-\frac{1}{8}{)^{\frac{1}{3}}}+(-\frac{{\sqrt{5}}}{2}{)^0}+{log_2}\sqrt{2}+{log_2}3•{log_3}4
(2)若α=\frac{π}{3},求\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}}{{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}}的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在y軸上,離心率e=\frac{{\sqrt{2}}}{2},橢圓上的點(diǎn)到焦點(diǎn)的最短距離為1-\frac{{\sqrt{2}}}{2},直線l與y軸交于點(diǎn)P(0,m),與橢圓C交于相異兩點(diǎn)A,B,且\overline{AP}=3\overline{PB}
(1)求橢圓C的方程;
(2)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若P(A)=0.5,P(B)=0.3,P(AB)=0.2,則P(A|B)=\frac{2}{3}

查看答案和解析>>

同步練習(xí)冊答案