分析 (1)證明∠ABC=∠BCD,即可證明AB∥PD,可得:∠PCA=∠BAC;
(2)證明△PAC~△CBA,則PCAC=ACAB=PABC,即可求APBC.
解答 (1)證明:∵直線PA與圓切于點(diǎn)A,∴∠PAC=∠ABC,…(2分)
∵∠PAC=∠BCD,∴∠ABC=∠BCD,…(3分)
∴AB∥PD,…(4分)
∴∠PCA=∠BAC…(5分)
(2)解:∵∠PCA=∠BAC,∠PAC=∠ABC,
∴△PAC~△CBA,則PCAC=ACAB=PABC,…(7分)
∵PC=2AB=2,∴AC2=AB•PC=2,即AC=√2,…(9分)
∴APBC=ACAB=√2…(10分)
點(diǎn)評 本題考查圓的切線的性質(zhì),考查三角形相似的判定,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | c>b>a | C. | c>a>b | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (√2,0) | B. | (2,0) | C. | (√6,0) | D. | (√10,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在(-\frac{5π}{12},\frac{π}{12})上是減函數(shù) | B. | f(x)在(-\frac{5π}{12},\frac{π}{12})上是增函數(shù) | ||
C. | f(x)在(\frac{π}{3},\frac{5π}{6})上是減函數(shù) | D. | f(x)在(\frac{π}{3},\frac{5π}{6})上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com