6.設(shè)直線x-y-a=0與圓x2+y2=4相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若△AOB為等邊三角形,則實(shí)數(shù)a的值為(  )
A.$±\sqrt{3}$B.$±\sqrt{6}$C.±3D.±9

分析 由圓的標(biāo)準(zhǔn)方程找出圓心坐標(biāo)與半徑r,利用△AOB為等邊三角形,點(diǎn)到直線的距離公式列出關(guān)于a的方程,求出方程的解即可得到a的值.

解答 解:由圓的方程得到圓心坐標(biāo)為(0,0),半徑r=2,
由△AOB為等邊三角形,得圓心到直線x-y-a=0的距離d=$\frac{|-a|}{\sqrt{2}}$=$\sqrt{3}$,
解得:a=±$\sqrt{6}$.
故選B.

點(diǎn)評(píng) 此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,其中由△AOB為等邊三角形,得圓心到直線x-y-a=0的距離d=$\frac{|-a|}{\sqrt{2}}$=$\sqrt{3}$是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x}+1,x≤0}\\{|lnx|,x>0}\end{array}\right.$當(dāng)1<a<2時(shí),關(guān)于x的方程f[f(x)]=a實(shí)數(shù)解的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=2cos($\frac{π}{2}$-ωx)+2sin($\frac{π}{3}$-ωx)(ω>0,x∈R),若f$(\frac{π}{6})$+f$(\frac{π}{2})$=0,且f(x)在區(qū)間$(\frac{π}{6},\frac{π}{2})$上遞減.
(1)求f(0)的值;     
(2)求ω;
(3)解不等式f(x)≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖是根據(jù)我省的統(tǒng)計(jì)年鑒中的資料做成的2007年至2016年我省城鎮(zhèn)居民百戶家庭人口數(shù)的莖葉圖.圖中左邊的數(shù)字從左到右分別表示城鎮(zhèn)居民百戶家庭人口數(shù)的百位數(shù)字和十位數(shù)字,右邊的數(shù)字表示城鎮(zhèn)居民百戶家庭人口數(shù)的個(gè)位數(shù)字.從圖中可以得到2007年至2016年我省城鎮(zhèn)居民百戶家庭人口數(shù)的平均數(shù)為303.6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(2x-3)4=a0+a1x+a2x2+a3x3+a4x4,求
(1)a1+a2+a3+a4
(2)(a0+a2+a42-(a1+a32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.甲、乙兩組數(shù)據(jù)的莖葉圖如圖所示,其中m為小于10的自然數(shù),已知甲組數(shù)據(jù)的中位數(shù)大于乙組數(shù)據(jù)的中位數(shù),則甲組數(shù)據(jù)的平均數(shù)也大于乙組數(shù)據(jù)的平均數(shù)的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=|x-a|+|x-3a|.
(1)若f(x)的最小值為2,求a的值;
(2)若對(duì)?x∈R,?a∈[-1,1],使得不等式m2-|m|-f(x)<0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在多面體ABCDE中,ABCD是矩形,平面ABCD⊥平面CDE,CD⊥DE,2DE=2DC=BC,F(xiàn)是棱BC的中點(diǎn).
(1)證明:AF⊥EF;
(2)已知CD=1,求點(diǎn)B到平面AEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖是由三個(gè)相同小正方體組成的幾何體的主視圖,那么這個(gè)幾何體可以是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案