分析 (1)運用導(dǎo)數(shù)的定義,求得△y,和f'(x)=$\underset{lim}{△x→0}$$\frac{△y}{△x}$,計算即可得到所求;
(2)由導(dǎo)數(shù)的幾何意義,可得切線的斜率和切點,運用點斜式方程,即可得到所求切線的方程.
解答 解:(1)△y=f(x+△x)-f(x)=(x+△x)3-(x+△x)+3-x3+x-3
=3x2△x+3x△x2+△x3-△x,
∴$\frac{△y}{△x}$=3x2+3x△x+△x2-1,
則導(dǎo)函數(shù)f'(x)=$\underset{lim}{△x→0}$$\frac{△y}{△x}$=$\underset{lim}{△x→0}$(3x2+3x△x+△x2-1)=3x2-1;
(2)由f(x)得f′(x)=3x2-1,
設(shè)所求切線的斜率為k,
則k=f′(1)=3×12-1=2,
又f(1)=13-1+3=3,
所以切點坐標(biāo)為(1,3),
由點斜式得切線的方程為y-3=2(x-1),即2x-y+1=0.
點評 本題考查導(dǎo)數(shù)的定義和運用:求切線的方程,注意運用定義法和直線方程,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{19}$ | B. | $\frac{1}{19}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{2}(\sqrt{2}-1)π$ | B. | $\frac{25}{4}(3-2\sqrt{2})π$ | C. | $25(3-2\sqrt{2})π$ | D. | $\frac{125}{6}(5\sqrt{2}-7)π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com