9.已知${({x+a})^2}{({2x-\frac{1}{x}})^5}$的展開式中不含x3的項(xiàng),則a=±1.

分析 先求得二項(xiàng)式展開式的通項(xiàng)公式,求得含x3項(xiàng)的系數(shù),于是可是得到關(guān)于a的方程解得即可.

解答 解:${({x+a})^2}{({2x-\frac{1}{x}})^5}$=x2(2x-$\frac{1}{x}$)5+2ax(2x-$\frac{1}{x}$)5+a2(2x-$\frac{1}{x}$)5,其中含x3的項(xiàng)的系數(shù)為:${2}^{3}{C}_{5}^{2}-{2}^{4}{a}^{2}{C}_{5}^{1}$=80-80a2=0,所以a=±1.
故答案為:±1.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)是定義在實(shí)數(shù)集R上的不恒為零的偶函數(shù),且xf(x+1)=(x+1)f(x)對任意實(shí)數(shù)x恒成立,則$f[f(\frac{5}{2})]$的值是( 。
A.0B.$\frac{1}{2}$C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知0≤φ<π,函數(shù)$f(x)=\frac{{\sqrt{3}}}{2}cos(2x+φ)+{sin^2}x$.
(Ⅰ)若$φ=\frac{π}{6}$,求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若f(x)的最大值是$\frac{3}{2}$,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AC=9,BC=12,AB=15,AA1=12,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC⊥B1C;  
(2)求證:AC1∥平面CDB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.拋物線y2=-8x中,以(-1,1)為中點(diǎn)的弦所在的直線方程為4x+y+3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)將參數(shù)方程轉(zhuǎn)化為普通方程:$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{y=1+sin2θ}\end{array}}\right.({θ為參數(shù)})$
(2)求橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$的參數(shù)方程:
①設(shè)x=3cosφ,φ為參數(shù);
②設(shè)y=2t,t為參數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若直線ax+by+1=0(a、b>1)過圓x2+y2+8x+2y+1=0的圓心,則$\frac{1}{a}+\frac{4}$的最小值為( 。
A.8B.12C.16D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)$f(x)=2sin(\frac{π}{3}x+\frac{π}{2})$,若對任意x都有f(x1)≤f(x)≤f(x2),則|x1-x2|的最小值為(  )
A.2B.4C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.?dāng)?shù)列{an}中,已知對任意自然數(shù)n,a1+a2+a3+…+an=2n,則a12+a22+a32+…+an2=(  )
A.$\frac{1}{3}$(4n-1)B.$\frac{1}{3}$(2n-1)C.4n-1D.$\frac{1}{3}$(4n+8)

查看答案和解析>>

同步練習(xí)冊答案