考點:對數(shù)函數(shù)的圖像與性質(zhì),兩角和與差的正弦函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)令對數(shù)的真數(shù)大于0求出x的范圍為定義域,據(jù)三角函數(shù)的有界性求出值域.
(2)判斷函數(shù)的奇偶性先看定義域,定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要條件據(jù)函數(shù)最小正周期的定義,求出周期.
(3)函數(shù)為復(fù)合函數(shù),據(jù)符號函數(shù)的單調(diào)性同增異減,外函數(shù)是減函數(shù),求出內(nèi)函數(shù)的遞增區(qū)間為函數(shù)的遞減區(qū)間;內(nèi)函數(shù)的遞減區(qū)間為函數(shù)的遞增區(qū)間.
解答:
解:(1)由題意得:sinx-cosx≠0,∴x≠kπ+
,
∴函數(shù)的定義域為{x|x≠kπ+
},(k∈Z).
由sinx-cosx=
sin(x-
),得0<|sinx-cosx|≤
,
∴f(x)=log
|sinx-cosx|≥-
,
∴函數(shù)f(x)的值域是[-
,+∞);
(2)因為f(x)定義域在數(shù)軸上對應(yīng)的點不關(guān)于原點對稱,故f(x)是非奇非偶函數(shù),
f(x)=
=
=
-
,
∵有絕對值,∴T=
=π;
(3)∵函數(shù)y=|sinx-cosx|=
|sin(x-
)|,
由kπ<x-
≤kπ+
,得:kπ+
<x≤kπ+
π,
∴函數(shù)y=|sinx-cosx|在(kπ+
,kπ+
π]遞增,
由kπ+
≤x-
≤kπ+π,得:kπ+
π≤x≤kπ+
π,
∴函數(shù)y=|sinx-cosx|在[kπ+
π,kπ+
π]遞減,
根據(jù)復(fù)合函數(shù)的單調(diào)性得:
∴函數(shù)f(x)在(kπ+
,kπ+
π]遞減,在[kπ+
π,kπ+
π]遞增.
點評:本題考查函數(shù)的性質(zhì):函數(shù)的定義域、值域、單調(diào)性、奇偶性、周期性,屬于中檔題.