已知直線l1:x-2y+1=0與l2:2x+ky+3=0平行,則k的值是(  )
A、
1
4
B、-
1
4
C、-4
D、4
考點:直線的一般式方程與直線的平行關(guān)系
專題:直線與圓
分析:直接由兩直線平行與系數(shù)間的關(guān)系列式求得k的值.
解答: 解:∵直線l1:x-2y+1=0與l2:2x+ky+3=0平行,
1×k-2×(-2)=0
1×3-2×1≠0
,解得:k=-4.
故選:C.
點評:本題考查了直線的一般式方程與直線的平行關(guān)系,關(guān)鍵是對公式的記憶與應(yīng)用,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
6
),在△ABC中,a,b,c分別是角A,B,C的對邊,若a=
3
,f(A)=1,則b+c的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3cos2
ωx
2
+
3
2
sinωx-
3
2
(ω>0)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點,B、C為圖象與x軸的交點,且△ABC為等邊三角形.將函數(shù)f(x)的圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼摩斜叮?br />將所得圖象向右平移
3
個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象
(1)求函數(shù)g(x)的解析式及函數(shù)g(x)的對稱中心.
(2)若3sin2
π
2
-
3
m[g(x)-1]≥m+2對任意x∈[0,2π]恒成立,
求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lg(sinx)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=(m2-m-1)xm2-2m-3,當(dāng)x∈(0,+∞)時為減函數(shù),則冪函數(shù)y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間兩點A(2,1,7)、B(-1,1,3),則A、B兩點間的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U為實數(shù)集,集合 A={x|x2-2x-3<0},B={x|y=ln(1-x)},則如圖中陰影部分表示的集合為( 。
A、{x|x-1≤x<3}
B、{x|x<3}
C、{x|x≤-1}
D、{x|-1<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi),表示復(fù)數(shù)z=(m-3)+2
m
i的點位于直線y=x上,則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx+x2+ax,g(x)=f(x)-x2+1,當(dāng)a=-1時,證明g(x)≤0在其定義域內(nèi)恒成立,并證明:
ln22
22
+
ln32
32
+…+
lnn2
n2
2n2-n-1
2(n+1)
,(n∈N,n≥2).

查看答案和解析>>

同步練習(xí)冊答案