分析 根據(jù)題意得出$\left\{\begin{array}{l}{a>0}\\{ac=1}\end{array}\right.$,化簡$\frac{a-c}{{a}^{2}+{c}^{2}}$=$\frac{a-c}{{(a-c)}^{2}+2}$;用換元法設(shè)a-c=t,t>0,利用基本不等式求出f(t)的最大值即可.
解答 解:∵二次不等式ax2+2x+c≤0的解集為{x|x=-$\frac{1}{a}$},
∴$\left\{\begin{array}{l}{a>0}\\{4-4ac=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{a>0}\\{ac=1}\end{array}\right.$;
又a>c,∴a-c>0,
∴$\frac{a-c}{{a}^{2}+{c}^{2}}$=$\frac{a-c}{{(a-c)}^{2}+2ac}$=$\frac{a-c}{{(a-c)}^{2}+2}$;
設(shè)a-c=t,則t>0,
∴f(t)=$\frac{t}{{t}^{2}+2}$=$\frac{1}{t+\frac{2}{t}}$;
又∵t+$\frac{2}{t}$≥2$\sqrt{t•\frac{2}{t}}$=2$\sqrt{2}$,當(dāng)且僅當(dāng)t=$\frac{2}{t}$,即t=$\sqrt{2}$時取“=”;
∴f(t)≤$\frac{1}{2\sqrt{2}}$=$\frac{\sqrt{2}}{4}$;
即$\frac{a-c}{{a}^{2}{+c}^{2}}$的最大值是$\frac{\sqrt{2}}{4}$.
故答案為:$\frac{\sqrt{2}}{4}$.
點評 本題考查了一元二次不等式的解法與應(yīng)用問題,也考查了基本不等式的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等邊三角形 | B. | 等腰三角形 | C. | 直角三角形 | D. | 斜三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{3}$或$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | 2$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com