【題目】如圖,在四棱錐P-ABCD 中,AB∥CD ,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分別為CD和PC的中點.求證:
(1)BE∥平面PAD;
(2)平面BEF⊥平面PCD.
【答案】詳見解析
【解析】試題分析:(1)根據(jù)條件,易證四邊形是平行四邊形,所以,平面,平面,所以平面;
(2)由條件易證平面,,所以平面,,根據(jù)中點,,所以,,那么可證明平面,平面,根據(jù)面面垂直的判定定理,平面平面.
試題解析:證明:(1)因為平面PAD⊥底面ABCD,且PA垂直于這兩個平面的交線AD,所以PA⊥底面ABCD.
因為AB∥CD,CD=2AB,E為CD的中點,所以AB∥DE,且AB=DE.
所以ABED為平行四邊形,所以BE∥AD.
又因為平面PAD,AD平面PAD,所以BE∥平面PAD.
(2)因為AB⊥AD,而且ABED為平行四邊形,所以BE⊥CD,AD⊥CD.
由(1)知PA⊥底面ABCD,所以PA⊥CD,因為PAAD=A,
所以CD⊥平面PAD,所以CD⊥PD.
因為E和F分別是CD和PC的中點,所以PD∥EF,所以CD⊥EF.
又EFBE=E,所以CD⊥平面BEF.
所以平面BEF⊥平面PCD.
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠修建一個長方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價為120元,池壁每平方米的造價為100元.設池底長方形的長為x米.
(Ⅰ)求底面積,并用含x的表達式表示池壁面積;
(Ⅱ)怎樣設計水池能使總造價最低?最低造價是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在棱長為1的正方體ABCD—A1B1C1D1中,
M、N分別是AB1、BC1的中點.
(Ⅰ)求證:直線MN//平面ABCD.
(Ⅱ)求B1到平面A1BC1的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中是實數(shù))
(1)求的單調區(qū)間;
(2)若設,且有兩個極值點,,求取值范圍.(其中為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空間中任意放置的棱長為2的正四面體.下列命題正確的是_________.(寫出所有正確的命題的編號)
①正四面體的主視圖面積可能是;
②正四面體的主視圖面積可能是;
③正四面體的主視圖面積可能是;
④正四面體的主視圖面積可能是2
⑤正四面體的主視圖面積可能是.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面為平行四邊形,PD⊥平面ABCD,M為PC中點.
(1)求證:AP∥平面MBD;
(2)若AD⊥PB,求證:BD⊥平面PAD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com