某市的教育研究機(jī)構(gòu)對(duì)全市高三學(xué)生進(jìn)行綜合素質(zhì)測(cè)試,隨機(jī)抽取了部分學(xué)生的成績(jī),得到如圖所示的成績(jī)頻率分布直方圖.
(1)估計(jì)全市學(xué)生綜合素質(zhì)成績(jī)的平均值;
(2)若評(píng)定成績(jī)不低于80分為優(yōu)秀,視頻率為概率,從全市學(xué)生中任取3名學(xué)生(看作有放回的抽樣),變量ξ表示3名學(xué)生中成績(jī)優(yōu)秀的人數(shù),求變量ξ的分布列及期望E(ξ).
考點(diǎn):離散型隨機(jī)變量的期望與方差,眾數(shù)、中位數(shù)、平均數(shù)
專題:綜合題,概率與統(tǒng)計(jì)
分析:(1)求每個(gè)小矩形底邊中點(diǎn)的橫坐標(biāo)乘以對(duì)應(yīng)小矩形的面積之和,可得數(shù)據(jù)的平均數(shù);
(2)由題意,優(yōu)秀的概率為0.3,不優(yōu)秀的概率為0.7,ξ的可能取值為0,1,2,3,求出相應(yīng)的概率,即可求出分布列與期望.
解答: 解:(1)平均數(shù)
.
x
=55×0.012×10+65×0.018×10+75×0.04×10+85×0.022×10+95×0.08×10
=74.6,
∴學(xué)生綜合素質(zhì)成績(jī)的平均值為74.6;
(2)由題意,優(yōu)秀的概率為0.3,不優(yōu)秀的概率為0.7,ξ的可能取值為0,1,2,3,則
P(ξ=0)=0.73=0.343,P(ξ=1)=
C
1
3
•0.3•0.72
=0.441,
P(ξ=2)=
C
2
3
•0.32•0.7
=0.189,P(ξ=3)=0.33=0.027,
∴ξ的分布列為
 ξ  0  1  2  3
 P  0.343  0.441  0.189 0.027 
E(ξ)=1×0.441+2×0.189+3×0.027=0.901.
點(diǎn)評(píng):本題考查了頻率分布直方圖,考查了分布列與期望,解題的關(guān)鍵是確定變量的取值,求出相應(yīng)的概率.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將51轉(zhuǎn)化為二進(jìn)制數(shù)得( 。
A、100111(2)
B、110011(2)
C、110110(2)
D、110101(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),且f(x+2)=-f(x),若f(x)在[-1,0]上是增函數(shù),f(1),f(
3
2
),f(
13
3
)
的大小關(guān)系是( 。
A、f(1)<f(
3
2
)<f(
13
3
)
B、f(
3
2
)<f(1)<f(
13
3
)
C、f(
13
3
)<f(1)<f(
3
2
)
D、f(
13
3
)<f(
3
2
)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某市有關(guān)部門根據(jù)對(duì)某地干部的月收入情況調(diào)查后畫出的樣本頻率分布直方圖,已知圖中第一組的頻數(shù)為4000.請(qǐng)根據(jù)該圖提供的信息解答下列問題:(圖中每組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在[1000,1500)
(1)求樣本中月收入在[2500,3500)的人數(shù);
(2)為了分析干部的收入與年齡、職業(yè)等方面的關(guān)系,必須從樣本的各組中按月收入再用分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在[1500,2000)的這段應(yīng)抽多少人?
(3)試估計(jì)樣本數(shù)據(jù)的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=|sinx|+|cosx|,試根據(jù)下列要求研究函數(shù)f(x)的性質(zhì):
(1)證明:函數(shù)f(x)是偶函數(shù);
(2)函數(shù)f(x)是周期函數(shù),并求出它的一個(gè)周期;
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間(不必證明),并求函數(shù)f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y為共軛復(fù)數(shù),且(x+y)2-3xyi=4-6i,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)1<x≤2時(shí),不等式x2-2ax+a<0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=-a+
-x2+4x
,g(x)=ax+a,若恒有f(x)≤g(a)成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(π,
π
),則這個(gè)函數(shù)的解析式為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案