已知f(x)=|sinx|+|cosx|,試根據(jù)下列要求研究函數(shù)f(x)的性質(zhì):
(1)證明:函數(shù)f(x)是偶函數(shù);
(2)函數(shù)f(x)是周期函數(shù),并求出它的一個(gè)周期;
(3)寫(xiě)出函數(shù)f(x)的單調(diào)區(qū)間(不必證明),并求函數(shù)f(x)的最值.
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)的周期性
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:(1)根據(jù)函數(shù)奇偶的定義即可證明:函數(shù)f(x)是偶函數(shù);
(2)根據(jù)函數(shù)周期性的定義即可證明函數(shù)f(x)是周期函數(shù),并求出它的一個(gè)周期;
(3)求出函數(shù)的表達(dá)式,即可求出函數(shù)的單調(diào)區(qū)間和函數(shù)的最值.
解答: 解:(1)f(-x)=|cos(-x)|+|sin(-x)|=|cosx|+|sinx|=f(x),
∴f(x)是偶函數(shù);
(2)∵f(x+
π
2
)=|sin(x+
π
2
)|+|cos(x+
π
2
)=|cosx|+|sinx|,
∴此時(shí)
π
2
是函數(shù)的一個(gè)周期.
(3)f(x)=
sin?x+cos?x,0≤x≤
π
2
sin?x-cos?x,
π
2
<x≤π
-sin?x-cos?x,π<x≤
2
cos?x-sin?x,
2
<x≤2π
,
作出函數(shù)f(x)的圖象可知:
函數(shù)的單調(diào)遞增區(qū)間為[
2
,
2
+
π
4
],k∈Z,
函數(shù)的單調(diào)遞減區(qū)間為[
2
+
π
4
,
2
+
π
2
],k∈Z,
當(dāng)x∈[0,2π]時(shí),f(x)∈[1,
2
],
則函數(shù)的最大值
2
,最小值為1.
點(diǎn)評(píng):本題主要考查三角函數(shù)的圖象和性質(zhì),利用條件求出函數(shù)的表達(dá)式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=2-2i,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在直線x=1上,且滿(mǎn)足z1•z2是實(shí)數(shù),則z2等于( 。
A、1-iB、1+i
C、+iD、-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知條件p:α是兩條直線的夾角,條件q:α是第一象限的角.則“條件p”是“條件q”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=60°,平面PAD⊥平面ABCD,PA=PD=AD=2,Q為AD的中點(diǎn),M是棱PC上一點(diǎn),且PM=
1
3
PC.
(Ⅰ)求證:PQ⊥平面ABCD;
(Ⅱ)證明:PA∥平面BMQ;
(Ⅲ)求二面角M-BQ-C的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=4cosxsin(x+
π
6
)-1
(1)求f(x)的最小正周期;
(2)在△ABC中,角A所對(duì)的邊為a,且f(A)=2,a=1,求△ABC外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市的教育研究機(jī)構(gòu)對(duì)全市高三學(xué)生進(jìn)行綜合素質(zhì)測(cè)試,隨機(jī)抽取了部分學(xué)生的成績(jī),得到如圖所示的成績(jī)頻率分布直方圖.
(1)估計(jì)全市學(xué)生綜合素質(zhì)成績(jī)的平均值;
(2)若評(píng)定成績(jī)不低于80分為優(yōu)秀,視頻率為概率,從全市學(xué)生中任取3名學(xué)生(看作有放回的抽樣),變量ξ表示3名學(xué)生中成績(jī)優(yōu)秀的人數(shù),求變量ξ的分布列及期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a、b、c分別是內(nèi)角A、B、C的對(duì)邊,若∠A+∠B=120°,求證:
a
b+c
+
b
a+c
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列定積分
(1)
π
2
0
(3x2+sinx)dx.
(2)
π
2
π
6
cos2xdx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=tanωx(ω>0)的圖象與y=m(m為常數(shù))的圖象相交的相鄰兩交點(diǎn)間的距離為2π,則ω=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案