1.已知集合A={x|x≥1},B={x|x≥a},若A$\underline?B$,則實(shí)數(shù)a的取值范圍是(-∞,1].

分析 利用并集的定義和不等式的性質(zhì)求解.

解答 解:∵集合 A={x|x≥1},B={x|x≥a},A$\underline?B$,
∴a≤1.
∴實(shí)數(shù)a的取值范圍是(-∞,1].
故答案為:(-∞,1].

點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意子集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知圓O:x2+y2=a2(a>0),點(diǎn)A(0,4),B(2,2).
(1)若線段AB的中垂線與圓O相切,求實(shí)數(shù)a的值;
(2)過(guò)直線AB上的點(diǎn)P引圓O的兩條切線,切點(diǎn)為M,N,若∠MPN=60°,則稱點(diǎn)P為“好點(diǎn)”.若直線AB上有且只有兩個(gè)“好點(diǎn)”,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x>0}\\{{2}^{-x}-1,x≤0}\end{array}\right.$,則f[f(-2)]=2;若f(x0)<3,則x0的取值范圍是(-2,7).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)P,Q是兩個(gè)非空集合,定義集合間的一種運(yùn)算“?”:P?Q={x|x∈P∪Q且x∉P∩Q}.如果P={x|0≤x≤2},Q={x|x>1},則P?Q=( 。
A.[0,1)∪(2,+∞)B.[0,1]∪(2,+∞)C.[1,2]D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x2-2ax+5(a>1).
(1)若f(x)的定義域和值域均是[1,a],求實(shí)數(shù)a的值;
(2)若f(x)在區(qū)間(-∞,2]上是減函數(shù),且對(duì)任意的x∈[1,2],都有f(x)≤0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x},x≤3\\{log_2}x,x>3\end{array}\right.$,則f(f(3))=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知一個(gè)扇形的周長(zhǎng)為定值a,求其面積的最大值,并求此時(shí)圓心角α的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若實(shí)數(shù)b滿足$2f({log_2}b)+f({log_{\frac{1}{2}}}b)≤3f(1)$,則實(shí)數(shù)b的取值范圍是$[{\frac{1}{2},2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知樣本數(shù)據(jù)x1,x2,x3,x4,x5的方差s2=3,則樣本數(shù)據(jù)2x1,2x2,2x3,2x4,2x5的方差為12.

查看答案和解析>>

同步練習(xí)冊(cè)答案