分析 (1)由正弦定理可求a=$\frac{3c}{4}$,進而利用余弦定理可得c的值.
(2)由正弦定理,可得a=$\frac{2\sqrt{13}}{\sqrt{3}}$sinA,c=$\frac{2\sqrt{13}}{\sqrt{3}}$sinC,利用三角函數(shù)恒等變換的應(yīng)用化簡可得a+c=2$\sqrt{13}$sin(A+$\frac{π}{6}$),由$0<A<\frac{2π}{3}$,可求范圍$\frac{π}{6}<A+\frac{π}{6}<\frac{5π}{6}$,進而利用正弦函數(shù)的性質(zhì)可求最大值.
解答 解:(1)∴由3sinC=4sinA,利用正弦定理,可得:3c=4a,即a=$\frac{3c}{4}$,
∵$B=\frac{π}{3}$,b=$\sqrt{13}$.
∴由余弦定理,可得:b2=a2+c2-2accosB,即:13=($\frac{3c}{4}$)2+c2-2×$\frac{3c}{4}×c×\frac{1}{2}$,解得:c=4.
(2)由正弦定理,可得:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$=$\frac{\sqrt{13}}{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{13}}{\sqrt{3}}$,
∴a=$\frac{2\sqrt{13}}{\sqrt{3}}$sinA,c=$\frac{2\sqrt{13}}{\sqrt{3}}$sinC,
∴$a+c=\frac{{2\sqrt{13}}}{{\sqrt{3}}}({sinA+sinC})=\frac{{2\sqrt{13}}}{{\sqrt{3}}}[{sinA+sin({A+B})}]=\frac{{2\sqrt{13}}}{{\sqrt{3}}}[{sinA+sin({A+\frac{π}{3}})}]$=$\frac{{2\sqrt{13}}}{{\sqrt{3}}}({\frac{3}{2}sinA+sin\frac{{\sqrt{3}}}{2}cosA})=2\sqrt{13}sin({A+\frac{π}{6}})$.
由$0<A<\frac{2π}{3}$,得$\frac{π}{6}<A+\frac{π}{6}<\frac{5π}{6}$.
所以當(dāng)$A+\frac{π}{6}=\frac{π}{2}$,即$A=\frac{π}{3}$時,${({a+c})_{max}}=2\sqrt{13}$.
點評 本題主要考查了正弦定理,余弦定理,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m=1,n=1 | B. | m=1,n=2 | C. | m=2,n=1 | D. | m=2,n=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,sinx≤1 | B. | ?x∈R,sinx>1 | C. | ?x∈R,sinx≥1 | D. | ?x∈R,sinx>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 雙曲線 | B. | 雙曲線的一支 | C. | 一條射線 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com