10.已知命題p:?x∈R,sinx≤1,則¬p為(  )
A.?x∈R,sinx≤1B.?x∈R,sinx>1C.?x∈R,sinx≥1D.?x∈R,sinx>1

分析 命題p是全稱命題,其否定應為特稱命題,注意量詞和不等號的變化.

解答 解:命題p:?x∈R,sinx≤1”是全稱命題,
否定時將量詞對任意的x變?yōu)?x,再將不等號≤變?yōu)椋炯纯桑?br />故¬p為:?x∈R,sinx>1.
故選:D

點評 本題考查命題的否定,全稱命題和特稱命題,屬基本知識的考查.注意在寫命題的否定時量詞的變化.屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖是一個組合體的三視圖,根據圖中數(shù)據,可得該幾何體的表面積(接觸面積忽略不計)是( 。
A.32πB.36πC.40πD.48π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若偶函數(shù)f(x)滿足f(x+π)=f(x),且f(-$\frac{π}{3}$)=$\frac{1}{2}$,則f($\frac{2017π}{3}$)的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.計算($\frac{125}{27}$)${\;}^{-\frac{1}{3}}$+lg$\frac{1}{4}$-lg25=-$\frac{7}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在△ABC中,角A、B、C所對的邊分別為a、b、c,角A、B、C的度數(shù)成等差數(shù)列,$b=\sqrt{13}$.
(1)若3sinC=4sinA,求c的值;
(2)求a+c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在△ABC中,角A、B、C所對的邊分別為a、b、c,B=60°,b=$\sqrt{13}$.
(1)若3sinC=4sinA,求c的值;
(2)求a+c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.焦點在x軸上,長、短半軸長之和為10,焦距為$4\sqrt{5}$,則橢圓的標準方程為( 。
A.$\frac{x^2}{6}+\frac{y^2}{4}=1$B.$\frac{x^2}{16}+\frac{y^2}{36}=1$C.$\frac{x^2}{36}+\frac{y^2}{16}=1$D.$\frac{x^2}{49}+\frac{y^2}{9}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知loga2,logb2∈R,則“2a>2b>2”是“l(fā)oga2<logb2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=3sin(ωx+φ),g(x)=3cos(ωx+φ),若對任意x∈R,都有f($\frac{π}{6}$+x)=f($\frac{π}{6}$-x),則g($\frac{π}{6}$)=0.

查看答案和解析>>

同步練習冊答案