【題目】定義域為R的偶函數(shù)f(x)滿足對x∈R,有f(x+2)=f(x)﹣f(1),且當x∈[2,3]時,f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,則a的取值范圍是 .
【答案】(0, )
【解析】解:∵f(x+2)=f(x)﹣f(1),
且f(x)是定義域為R的偶函數(shù),
令x=﹣1可得f(﹣1+2)=f(﹣1)﹣f(1),
又f(﹣1)=f(1),
∴f(1)=0 則有f(x+2)=f(x),
∴f(x)是最小正周期為2的偶函數(shù).
當x∈[2,3]時,f(x)=﹣2x2+12x﹣18=﹣2(x﹣3)2 ,
函數(shù)的圖象為開口向下、頂點為(3,0)的拋物線.
∵函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,
令g(x)=loga(|x|+1),則f(x)的圖象和g(x)的圖象至少有3個交點.
∵f(x)≤0,∴g(x)≤0,可得0<a<1,
要使函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,
則有g(shù)(2)>f(2),可得 loga(2+1)>f(2)=﹣2,
即loga3>﹣2,∴3< ,解得- <a< ,又0<a<1,∴0<a< ,
故答案為:(0, ).
令x=﹣1,求出f(1),可得函數(shù)f(x)的周期為2,當x∈[2,3]時,f(x)=﹣2x2+12x﹣18,畫出圖形,根據(jù)函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,利用數(shù)形結(jié)合的方法進行求解.
科目:高中數(shù)學 來源: 題型:
【題目】某大學生在開學季準備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學季內(nèi),每售出盒該產(chǎn)品獲利潤元;未售出的產(chǎn)品,每盒虧損元.根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示。該同學為這個開學季購進了盒該產(chǎn)品,以(單位:盒,)表示這個開學季內(nèi)的市場需求量,(單位:元)表示這個開學季內(nèi)經(jīng)銷該產(chǎn)品的利潤。
(1)求市場需求量在[100,120]的概率;
(2)根據(jù)直方圖估計這個開學季內(nèi)市場需求量的中位數(shù);
(3)將表示為的函數(shù),并根據(jù)直方圖估計利潤不少于元的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,過點B作⊙O的切線BC,OC交⊙O于點E,AE的延長線交BC于點D.
(1)求證:CE2=CDCB.
(2)若AB=2,BC= ,求CE與CD的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x)=(|x﹣2|+1)4,給出如下三個命題:①f(x+2)是偶函數(shù);②f(x)在區(qū)間(﹣∞,2)上是減函數(shù),在區(qū)間(2,+∞)上是增函數(shù);③f(x)沒有最小值.其中正確的個數(shù)為( )
A. 1 B. 2 C. 3 D. 0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M、N分別是A1B1、A1C1的中點,BC=AC=CC1 , 則CN與AM所成角的余弦值等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位安排位員工在春節(jié)期間大年初一到初七值班,每人值班天,若位員工中的甲、乙排在相鄰的兩天,丙不排在初一,丁不排在初七,則不同的安排方案共有( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列的前項和為,等比數(shù)列的前項和為,且,,.
(1)若,求的通項公式;
(2)若,求.
【答案】(1);(2)21或.
【解析】試題分析:(1)設等差數(shù)列公差為,等比數(shù)列公比為,由已知條件求出,再寫出通項公式;(2)由,求出的值,再求出的值,求出。
試題解析:設等差數(shù)列公差為,等比數(shù)列公比為有,即.
(1)∵,結(jié)合得,
∴.
(2)∵,解得或3,
當時,,此時;
當時,,此時.
【題型】解答題
【結(jié)束】
20
【題目】如圖,已知直線與拋物線相交于兩點,且, 交于,且點的坐標為.
(1)求的值;
(2)若為拋物線的焦點, 為拋物線上任一點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),曲線在點處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com