【題目】某單位安排位員工在春節(jié)期間大年初一到初七值班,每人值班天,若位員工中的甲、乙排在相鄰的兩天,丙不排在初一,丁不排在初七,則不同的安排方案共有(

A. B. C. D.

【答案】C

【解析】第一種:甲乙相鄰排在初一,初二或初六,初七,則先排甲和乙,有種,然后排丙(甲乙相鄰排在初一,初二)或乙甲乙相鄰排在或初六,初七,有種,剩下的其他四個人全排列有種,因此有種安排方案;第二種:甲乙相鄰排中間,若丙排初七,先排甲和乙,因為相鄰且在中間,則有種,然后丙排在初七,剩下四個人全排列有種,若丙不排初七,先排甲和乙,因為相鄰且在中間,則有種,然后排丙,丙不在初一和初七,有種,接著排丁,丁不在初七,有種,剩下個人全排列,有種,因此共有種安排方案,所以共有種不同的安排方案,故選

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】閱讀如圖的程序框圖,運行相應的程序,輸出的結果為(

A.﹣2
B.
C.﹣1
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD

(1)證明:ACBD;

(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點,且AEEC,求四面體ABCE與四面體ACDE的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義域為R的偶函數(shù)f(x)滿足對x∈R,有f(x+2)=f(x)﹣f(1),且當x∈[2,3]時,f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD的底面為菱形,∠BCD=120°,AB=PC=2,AP=BP=

(1)求證:AB⊥PC;
(2)求側面BPC與側面DPC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)當時,求的單調區(qū)間.

)當時,求函數(shù)在區(qū)間上的最小值.

)在條件()下,當最小值為時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意存在常數(shù),都有成立,則稱上的有界函數(shù)其中稱為函數(shù)的一個上界已知函數(shù),

(1)若函數(shù)為奇函數(shù)求實數(shù)的值;

(2)在(1)的條件下,求函數(shù)在區(qū)間上的所有上界構成的集合;

(3)若函數(shù)上是以5為上界的有界函數(shù),求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直角坐標系xOy平面內,已知動點M到點D(﹣4,0)與E(﹣1,0)的距離之比為2.
(1)求動點M的軌跡C的方程;
(2)是否存在經(jīng)過點(﹣1,1)的直線l,它與曲線C相交于A,B兩個不同點,且滿足 (O為坐標原點)關系的點M也在曲線C上,如果存在,求出直線l的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xoy中,直線l的參數(shù)方程為 (t為參數(shù))在極坐標系與直角坐標系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸中,曲線C的方程為

(Ⅰ)求曲線C的直角坐標方程;

(Ⅱ)設曲線C與直線l交于點A、B,若點P的坐標為(1,1),求的值.

查看答案和解析>>

同步練習冊答案