設(shè)中心在坐標(biāo)原點,以坐標(biāo)軸為對稱軸的圓錐曲線C,離心率為
2
,且過點(5,4),則其焦距為( 。
A、6
2
B、6
C、5
2
D、5
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:由離心率判斷該圓錐曲線為等軸雙曲線,設(shè)雙曲線方程為x2-y2=m(m≠0),代入已知點,求得m,進而得到雙曲線方程,即可得到焦距.
解答: 解:由離心率大于1,且e=
c
a
=
a2+b2
a2
=
2

則該圓錐曲線為等軸雙曲線,
∴設(shè)雙曲線方程為x2-y2=m(m≠0),
代入點(5,4)得m=25-16=9.
∴雙曲線方程為
x2
9
-
y2
9
=1,焦距為2c=6
2

故選A.
點評:本題考查雙曲線的方程和性質(zhì),考查雙曲線的方程的求法,以及焦距,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的周期:y=cos2x+sin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等于1的三個正數(shù)a、b、c成等比數(shù)列,則(2-logba)(1+logca)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=2與函數(shù)f(x)=3sin(ωx+Φ)(ω>0,|Φ|<
π
2
)的圖象在y軸右側(cè)的交點依次為A,B,C,…,A,C兩點在x軸上的射影是A1C1,若矩形ACC1A1的面積為4,且f(2013)=-
3
3
2
,則f(x)的單調(diào)區(qū)間
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我市某鎮(zhèn)的一種特產(chǎn)由于運輸原因,長期只能在當(dāng)?shù)劁N售.當(dāng)?shù)卣畬υ撎禺a(chǎn)的銷售投資收益為:每投入x萬元,可獲得利潤P=-
1
100
(x-60)2+41(萬元).當(dāng)?shù)卣當(dāng)M在“十二•五”規(guī)劃中加快開發(fā)該特產(chǎn)的銷售,其規(guī)劃方案為:在規(guī)劃前后對該項目每年最多可投入100萬元的銷售投資,在實施規(guī)劃5年的前兩年中,每年都從100萬元中撥出50萬元用于修建一條公路,兩年修成,通車前該特產(chǎn)只能在當(dāng)?shù)劁N售;公路通車后的3年中,該特產(chǎn)既在本地銷售,也在外地銷售.在外地銷售的投資收益為:每投入x萬元,可獲利潤Q=-
99
100
(100-x)2+
294
5
(100-x)+160(萬元).
(1)若不進行開發(fā),求5年所獲利潤的最大值是多少?
(2)若按規(guī)劃實施,求5年所獲利潤(扣除修路后)的最大值是多少?
(3)根據(jù)(1),(2),該方案是否具有實施價值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在原點,一個焦點為(-2,0),且長軸長是短軸長的2倍,則該橢圓的標(biāo)準方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}中,首項a1=1,點(an,an+1)(n=1,2,3,…)均在直線y=2x+1上
(1)求a2,a3,a4的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1,x是有理數(shù)
0,x是無理數(shù)
,下列命題是真命題的是
 
(只填命題序號).
①函數(shù)f(x)是偶函數(shù);②對任意x∈R,f(x+
2
)=f(x);
③對任意x∈R,f(x+2)=f(x);
④對任意x,y∈R,f(x+y)=
1
2
(f(x)+f(x));
⑤若存在x,y∈R,使得f(x+y)=f(x)+f(y),則x,y都為無理數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+k•2-x,k∈R.
(1)若函數(shù)f(x)為奇函數(shù),求實數(shù)k的值;
(2)若對任意的x∈[0,+∞)都有f(x)<0成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案