已知直線y=2與函數(shù)f(x)=3sin(ωx+Φ)(ω>0,|Φ|<
π
2
)的圖象在y軸右側的交點依次為A,B,C,…,A,C兩點在x軸上的射影是A1C1,若矩形ACC1A1的面積為4,且f(2013)=-
3
3
2
,則f(x)的單調(diào)區(qū)間
 
考點:正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:結合矩形ACC1A1的面積為4,求出周期T=2,繼而求出ω,再根據(jù)函數(shù)周期性,求出Φ的值,再根據(jù)正弦函數(shù)的單調(diào)性,求出單調(diào)區(qū)間
解答: 解:∵矩形ACC1A1的面積為4,AA1=2,
∴A1C1=2,
∴T=2,
∴ω=
T
=π,
∵f(2013)=-
3
3
2
,
∴f(2013)=f(1006+1)=f(1)=-
3
3
2
,
∴3sin(π+Φ)=-
3
3
2
,
∴sinΦ=
3
2
,
∵|Φ|<
π
2
,
∴Φ=
π
3

∴f(x)=3sin(πx+
π
3
),
∴-
π
2
+2kπ<πx+
π
3
π
2
+2kπ,
π
2
+2kπ<πx+
π
3
2
+2kπ,k∈z,
-
5
6
+2k<x≤
1
6
+2k,
1
6
+2k<x≤
7
6
+2k,k∈z,
故f(x)的單調(diào)增區(qū)間為(-
5
6
+2k,
1
6
+2k],單調(diào)減區(qū)間為(
1
6
+2k,
7
6
+2k],k∈z,
故答案為:單調(diào)增區(qū)間為(-
5
6
+2k,
1
6
+2k],單調(diào)減區(qū)間為(
1
6
+2k,
7
6
+2k],k∈z
點評:本題考查了三角函數(shù)的周期的單調(diào)性求法,考查計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

用二分法求圖象連續(xù)不斷的函數(shù)f(x)在區(qū)間(1,5)上的近似解(精確度為0.1),求解的部分過程如下:f(1)•f(5)<0,取區(qū)間(1,5)的中點x1
1+5
2
=3,計算得f(1)•f(x1)<0f(x1)•f(5)>0,則此時呢個判斷函數(shù)f(x)一定有零點的區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線
x2
9
-
y2
18
=1的焦點作弦MN,若|MN|=48,則此弦的傾斜角為( 。
A、30°
B、60°
C、30°或150°
D、60°或120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某服裝廠從今年1月份開始制作某品牌運動裝,且前4個月的產(chǎn)量分別為1萬套,1.2萬套,1.3萬套,1.37萬套,由于產(chǎn)品質(zhì)量好,款式新穎,前幾個月的產(chǎn)品銷售情況良好,為在推銷產(chǎn)品時接受訂單不至于過多或過少,需要估測以后幾個月的產(chǎn)量,行家分析,產(chǎn)量的增加是由于工人生產(chǎn)熟練和理順了生產(chǎn)流程,因此廠里暫不準備增加設備和工人,假設你是廠長,你將會采用什么方法估算以后幾個月的產(chǎn)量?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)滿足2f(3x)+f(2-3x)=6x+1,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:
1
a
,
1
b
,
1
c
成等差數(shù)列,且a+c;a-c,a+c-2b都為正數(shù).求證:lg(a+c),lg(a-c),lg(a+c-2b)也成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設中心在坐標原點,以坐標軸為對稱軸的圓錐曲線C,離心率為
2
,且過點(5,4),則其焦距為(  )
A、6
2
B、6
C、5
2
D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:sinα-sinβ=sinγ,cosα-cosβ=cosγ,求cos2α+cos2β+cos2γ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)f(x)=log2(x2+x+1)的定義域為R,命題q:Sn=3n+t是等比數(shù)列{an}的前n項和.若“¬p∨q”為真命題,求實數(shù)t的值.

查看答案和解析>>

同步練習冊答案