【題目】已知函數(shù),求:
(1)函數(shù)的圖象在點(diǎn)(0,-2)處的切線方程;
(2)的單調(diào)遞減區(qū)間.
【答案】(1)9x﹣y﹣2=0.(2)f(x)的單調(diào)遞減區(qū)間為(﹣∞,﹣1),(3,+∞).
【解析】
(1)求出f′(x)=﹣3x2+6x+9,f′(0)=9,f(0)=﹣2,由此利用導(dǎo)數(shù)的幾何意義能求出函數(shù)y=f(x)的圖象在點(diǎn)(0,f(0))處的切線方程.
(2)由f′(x)=﹣3x2+6x+9<0,能求出f(x)的單調(diào)遞減區(qū)間.
(1)∵f(x)=﹣x3+3x2+9x﹣2,
∴f′(x)=﹣3x2+6x+9,
f′(0)=9,f(0)=﹣2,
∴函數(shù)y=f(x)的圖象在點(diǎn)(0,f(0))處的切線方程為:
y+2=9x,即9x﹣y﹣2=0.
(2)∵f(x)=﹣x3+3x2+9x﹣2,
∴f′(x)=﹣3x2+6x+9,
由f′(x)=﹣3x2+6x+9<0,
解得x<﹣1或x>3.
∴f(x)的單調(diào)遞減區(qū)間為(﹣∞,﹣1),(3,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的最小值為1,且.
(1)求的解析式.
(2)在區(qū)間[-1,1]上,的圖象恒在的圖象上方,試確定實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,Sn是和an的等差中項(xiàng).
(1)證明:數(shù)列{an}為等差數(shù)列;
(2)若bn=-n+5,求{an·bn}的最大項(xiàng)的值并求出取最大值時(shí)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某住宅小區(qū)為了使居民有一個(gè)優(yōu)雅舒適的生活環(huán)境,計(jì)劃建一個(gè)八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個(gè)相同的矩形ABCD和EFGH構(gòu)成的面積為200平方米的十字型地域.現(xiàn)計(jì)劃在正方形MNPQ上建花壇,造價(jià)為4200元/平方米,在四個(gè)相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價(jià)為210元/平方米,再在四個(gè)空角上鋪草坪,造價(jià)為80元/平方米.
(1)設(shè)總造價(jià)為S元,AD的邊長為x米,DQ的邊長為y米,試建立S關(guān)于x的函數(shù)關(guān)系式;
(2)計(jì)劃至少要投入多少元,才能建造這個(gè)休閑小區(qū).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:已知函數(shù)在上的最小值為,若恒成立,則稱函數(shù)在上具有“”性質(zhì).
()判斷函數(shù)在上是否具有“”性質(zhì)?說明理由.
()若在上具有“”性質(zhì),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,下列說法錯(cuò)誤的是( )
A. 若有最大值,則也有最大值
B. 若有最大值,則也有最大值
C. 若數(shù)列不單調(diào),則數(shù)列也不單調(diào)
D. 若數(shù)列不單調(diào),則數(shù)列也不單調(diào)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在高為6的等腰梯形中, ,且, ,將它沿對(duì)稱軸折起,使平面平面.如圖2,點(diǎn)為中點(diǎn),點(diǎn)在線段上(不同于, 兩點(diǎn)),連接并延長至點(diǎn),使.
(1)證明: 平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實(shí)數(shù)的取值范圍;
(3)證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓上一動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),則線段中點(diǎn)的軌跡方程為_______.
【答案】
【解析】
設(shè)出點(diǎn)的坐標(biāo),由此得到點(diǎn)的坐標(biāo),將點(diǎn)坐標(biāo)代入橢圓方程,化簡(jiǎn)后可得點(diǎn)的軌跡方程.
設(shè),由于是中點(diǎn),故,代入橢圓方程得,化簡(jiǎn)得.即點(diǎn)的軌跡方程為.
【點(diǎn)睛】
本小題主要考查代入法求動(dòng)點(diǎn)的軌跡方程,考查中點(diǎn)坐標(biāo),屬于基礎(chǔ)題.
【題型】填空題
【結(jié)束】
15
【題目】設(shè)是雙曲線:的右焦點(diǎn),是左支上的點(diǎn),已知,則周長的最小值是_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com