已知兩點(diǎn)A(-2,-3),B(3,0)關(guān)于直線l對(duì)稱,
(Ⅰ)求直線l方程;
(Ⅱ)求直線l在x軸上的截距.
考點(diǎn):直線的一般式方程,直線的點(diǎn)斜式方程
專題:直線與圓
分析:(Ⅰ)由題意可知l⊥AB,且線段AB的中點(diǎn)C(
1
2
-
3
2
)在直線l上.由垂直關(guān)系可得斜率,可得直線的點(diǎn)斜式方程,化為一般式即可;(Ⅱ)在直線l方程中令y=0可解得x值即為所求.
解答: 解:(Ⅰ)由題意可知l⊥AB,且線段AB的中點(diǎn)C(
1
2
,-
3
2
)在直線l上.
又線段AB的斜率為kAB=
-3-0
-2-3
=
3
5
,
由垂直關(guān)系可得直線l的斜率為-
5
3

再由線段AB的中點(diǎn)在直線l上可得y+
3
2
=-
5
3
(x-
1
2

化為一般式可得5x+3y+2=0
(Ⅱ)在直線l方程5x+3y+2=0中令y=0可解得x=-
2
5

∴直線l在軸上的截距為-
2
5
點(diǎn)評(píng):本題考查直線的一般式方程和直線的截距,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線y=
2x-x2
與x軸所圍成的區(qū)域?yàn)镈,向區(qū)域D內(nèi)隨機(jī)投一點(diǎn),則該點(diǎn)落入?yún)^(qū)域{(x,y)∈D|x2+y2<2}的概率是( 。
A、
π-1
π
B、
π
π+1
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖甲,將一個(gè)正三棱柱ABC-DEF截去一個(gè)三棱錐A-BCD,得到幾何體BCDEF,如圖乙,則該幾何體的正視圖(或稱主視圖)是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2sin(ωx+
π
3
)(ω>0,x∈R),且以π為最小正周期.
(1)求f(
π
2
)的值;
(2)已知f(
α
2
+
π
12
)=
10
13
,α∈(-
π
2
,0),求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)P(0,
A
2
)是函數(shù)y=Asin(
3
x+φ)(其中A>0,φ∈[0,π])的圖象與y軸的交點(diǎn),點(diǎn)Q、R是它與x軸的兩個(gè)交點(diǎn).
(Ⅰ)求φ的值;
(Ⅱ)若PQ⊥PR,求A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinx-cosx=t
(Ⅰ)用t表示sin3x-cos3x的值;
(Ⅱ)求函數(shù)y=sinx-cosx+sinxcosx,x∈[0,π]的最大值和最小值.(參考公式:a3-b3=(a-b)(a2+ab+b2))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校從參加今年自主招生考試的學(xué)生中隨機(jī)抽取容量為50的學(xué)生成績樣本,得頻率分布表如下:
組號(hào) 分組 頻數(shù) 頻率
第一組 [230,235) 8 0.16
第二組 [235,240) 0.24
第三組 [240,245) 15
第四組 [245,250) 10 0.20
第五組 [250,255] 5 0.10
合              計(jì) 50 1.00
(1)寫出表中①②位置的數(shù)據(jù);
(2)估計(jì)成績不低于240分的學(xué)生約占多少;
(3)為了選拔出更優(yōu)秀的學(xué)生,高校決定在第三、四、五組中用分層抽樣法抽取6名學(xué)生進(jìn)行第二輪考核,分別求第三、四、五各組參加考核人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
3
2
,且過點(diǎn)(1,
3
2
).拋物線C2:x2=-2py(p>0)的焦點(diǎn)坐標(biāo)為(0,-
1
2
).
(Ⅰ)求橢圓C1和拋物線C2的方程;
(Ⅱ)若點(diǎn)M是直線l:2x-4y+3=0上的動(dòng)點(diǎn),過點(diǎn)M作拋物線C2的兩條切線,切點(diǎn)分別為A,B,直線AB交橢圓C1于P,Q兩點(diǎn).
(i)求證直線AB過定點(diǎn),并求出該定點(diǎn)坐標(biāo);
(ii)當(dāng)△OPQ的面積取最大值時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x∈[1,10],執(zhí)行如圖所示的程序框圖,則輸出的x不小于39的概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案