求函數(shù)y=x+
1-2x
的值域.
考點(diǎn):函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:設(shè)t=
1-2x
,t≥0,則x=
1-t2
2
,從而y=
1-t2
2
+t
=-
1
2
(t-1)2+1
,由此能求出函數(shù)y=x+
1-2x
的值域.
解答: 解:設(shè)t=
1-2x
,t≥0,
則x=
1-t2
2
,
∴y=
1-t2
2
+t
=-
1
2
t2+t+
1
2
=-
1
2
(t-1)2+1
,
∵t≥0,∴t=1時(shí),即x=0時(shí),函數(shù)取得最大值ymax=1.
∴函數(shù)y=x+
1-2x
的值域?yàn)椋?∞,1].
點(diǎn)評(píng):本題考查函數(shù)的值域的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意換元法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間直角坐標(biāo)系中,M(1,3,-1),N(4,-2,3),則|MN|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
3x+5,x≤-1
2x2+1,-1<x<1
5x-2,x≥1
,若f(x)=2,則x的值是(  )
A、-1
B、-1或
4
5
C、±
2
2
D、-1或±
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)m,n,x,y滿足m2+n2=1,x2+y2=4,則my+nx的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
x2+1,x≥0
-x+1,x<0
,則f(f(-1))的值為(  )
A、0B、1C、-5D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“x=2”是“x2-4=0”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
3-x
+
1
x2-x-6
的定義域?yàn)?div id="kxz5lrd" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x-1
-
5-x
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(-4,3)和圓x2+y2=16.
(1)自P向圓引切線,求此切線的方程;
(2)自P向圓引割線,所得弦長(zhǎng)為2
7
,求此割線所在直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案