A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
拋物線的頂點(diǎn)在原點(diǎn)焦點(diǎn)在軸上,且經(jīng)過點(diǎn),圓過定點(diǎn),且圓心在拋物線上,記圓與軸的兩個(gè)交點(diǎn)為.
(1)求拋物線的方程;
(2)當(dāng)圓心在拋物線上運(yùn)動(dòng)時(shí),試問是否為一定值?請證明你的結(jié)論;
(3)當(dāng)圓心在拋物線上運(yùn)動(dòng)時(shí),記,,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的左頂點(diǎn)為A,左焦點(diǎn)為F,點(diǎn)P為該橢圓上任意一點(diǎn);若該橢圓的上頂點(diǎn)到焦點(diǎn)的距離為2,離心率e=,則·的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在直角坐標(biāo)系xOy中,曲線Cl的參數(shù)方程為為參
數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為
(I)求曲線Cl的普通方程與曲線C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)P的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)在[a,b]上連續(xù),在(a,b)上可導(dǎo)且,則當(dāng)時(shí),有( C )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
求經(jīng)過直線l1:3x+2y-1=0和l2:5x+2y+1=0的交點(diǎn),且垂直于直線l3:3x-5y+6=0的直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
求適合下列條件的圓的方程:
(1)圓心在直線y=-4x上,且與直線l:x+y-1=0相切于點(diǎn)P(3,-2);
(2)過三點(diǎn)A(1,12),B(7,10),C(-9,2).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com