19.已知復(fù)數(shù)z=i(1+i),則|z|等于( 。
A.0B.1C.$\sqrt{2}$D.2

分析 化簡復(fù)數(shù)z,求出它的模長即可.

解答 解:∵復(fù)數(shù)z=i(1+i)=-1+i,
∴|z|=$\sqrt{{(-1)}^{2}{+1}^{2}}$=$\sqrt{2}$.
故選:C.

點評 本題考查了復(fù)數(shù)的化簡與模長的計算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知,點A(-2,-5),B(6,6),點P在y軸上,且∠APB=90°,則點P的坐標為( 。
A.(0,-6)B.(0,7)C.(0,-6)或(0,7)D.(-6,0)或(7,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.對于函數(shù)f(x),若存在給定的實數(shù)對(a,b),對定義域中的任意實數(shù)x,都有f(a+x)•f(a-x)=b成立,則稱函數(shù)f(x)為“Ψ函數(shù)”.
(Ⅰ)函數(shù)f(x)=ex是“Ψ函數(shù)”,求出所有實數(shù)對(a,b)滿足的關(guān)系式,并寫出兩個實數(shù)對;
(Ⅱ)判斷函數(shù)f(x)=sinx是否為“Ψ函數(shù)”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,若bsinB-csinC=a,且△ABC的面積S=$\frac{^{2}+{c}^{2}-{a}^{2}}{4}$,則B=77.5°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,知cosA=$\frac{c}{a}$cosC,b+c=2+$\sqrt{2}$,cosB=$\frac{3}{4}$,則△ABC的面積是$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等差數(shù)列{an}滿足a3=7,a5+a7=26,其前n項和為Sn
(Ⅰ)求{an}的通項公式及Sn
(Ⅱ)令bn=$\frac{1}{{{S_n}-n}}$(n∈N*),求數(shù)列{bn}的前8項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,扇形AOB中,圓心角AOB的大小等于$\frac{π}{3}$,半徑為2,在半徑OA上有一動點C,過點C作平行于OB的直線交弧AB于點P.
(1)當OC=$\frac{2}{3}$時,求線段PC的長;
(2)設(shè)∠COP=θ,求△POC面積的最大值及此時θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在平面直角坐標系xOy中,以點(1,0)為圓心,且與直線x-y-3=0相切的圓的標準方程為(x-1)2+y2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c.
(1)若(a-sinB)cosC=cosBsinC,且c=1,求∠C的大小;
(2)若△ABC的面積為$\frac{1}{4}$a2,求$\frac{(b+c)^{2}}{2bc}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案