【題目】如圖,已知⊙O的直徑AB=3,點(diǎn)C為⊙O上異于AB的一點(diǎn),平面ABC,且,點(diǎn)M為線段VB的中點(diǎn).

1)求證:平面VAC;

2)若AB與平面VAC所成角的余弦值為,求二面角的余弦值.

【答案】(1)證明見解析(2)

【解析】

(1)根據(jù)線面垂直的判定定理即可證明平面VAC

(2)由AB與平面VAC所成角的余弦值為,求出,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值.

(1)證明:因?yàn)?/span>平面ABC,平面ABC

所以,

又因?yàn)辄c(diǎn)C為圓O上一點(diǎn),且AB為直徑,

所以,

又因?yàn)?/span>VC,平面VAC,,

所以平面VAC.

(2)由(1)知平面VAC,

所以AB與平面VAC的所成角就是

,,

.

由(1)得,,分別以AC,BCVC,

所在的直線為x軸,y軸,z軸建立空間直角坐標(biāo)系C-xyz如圖:

,,,

設(shè)平面VAC的法向量,,,

設(shè)平面VAM的法向量,

,令

,.

設(shè)二面角M-VA-C的平面角為,

所以,所以所求二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面,是正三角形,的交點(diǎn)恰好是中點(diǎn),又.

(1)求證:;

(2)設(shè)的中點(diǎn),點(diǎn)在線段上,若直線平面,求的長(zhǎng);

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線.

(1)若直線與拋物線相切,求直線的方程;

(2)設(shè),直線與拋物線交于不同的兩點(diǎn),,若存在點(diǎn),滿足,且線段互相平分(為原點(diǎn)),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在五邊形AEBCD中,,C,,,(如圖).ABE沿AB折起,使平面ABE⊥平面ABCD,線段AB的中點(diǎn)為O(如圖).

1)求證:平面ABE⊥平面DOE;

2)求平面EAB與平面ECD所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為調(diào)查高三年級(jí)學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取100名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在的男生人數(shù)有16人.

(1)試問在抽取的學(xué)生中,男,女生各有多少人?

(2)根據(jù)頻率分布直方圖,完成下列的列聯(lián)表,并判斷能有多大(百分之幾)的把握認(rèn)為“身高與性別有關(guān)”?

總計(jì)

男生身高

女生身高

總計(jì)

(3)在上述100名學(xué)生中,從身高在之間的男生和身高在之間的女生中間按男、女性別分層抽樣的方法,抽出6人,從這6人中選派2人當(dāng)旗手,求2人中恰好有一名女生的概率.

參考公式:

參考數(shù)據(jù):

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,為橢圓上不與左右頂點(diǎn)重合的任意一點(diǎn),分別為的內(nèi)心、重心,當(dāng)軸時(shí),橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班級(jí)期末考試后,對(duì)數(shù)學(xué)成績(jī)?cè)?/span>分以上(含分)的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.其中分?jǐn)?shù)段的人數(shù)為.

1)根據(jù)頻率分布直方圖,寫出該班級(jí)學(xué)生數(shù)學(xué)成績(jī)的眾數(shù);

2)現(xiàn)根據(jù)學(xué)生數(shù)學(xué)成績(jī)從第一組和第四組(從低分段到高分段依次為第一組,第二組,,第五組)中任意選出兩人形成學(xué)習(xí)小組.若選出的兩人成績(jī)之差大于分則稱這兩人為“最佳組合”,試求選出的兩人為“最佳組合”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若函數(shù)有兩個(gè)零點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推動(dòng)更多人閱讀,聯(lián)合國(guó)教科文組織確定每年的4月23日為“世界讀書日”設(shè)立目的是希望居住在世界各地的人,無論你是年老還是年輕,無論你是貧窮還是富裕,都能享受閱讀的樂趣,都能尊重和感謝為人類文明做出過巨大貢獻(xiàn)的思想大師們,都能保護(hù)知識(shí)產(chǎn)權(quán).為了解不同年齡段居民的主要閱讀方式,某校興趣小組在全市隨機(jī)調(diào)查了200名居民,經(jīng)統(tǒng)計(jì)這200人中通過電子閱讀與紙質(zhì)閱讀的人數(shù)之比為3:1,將這200人按年齡分組,其中統(tǒng)計(jì)通過電子閱讀的居民得到的頻率分布直方圖如圖所示,

(1)求a的值及通過電子閱讀的居民的平均年鹼;

(2)把年齡在第1,2,3組的居民稱為青少年組,年齡在第4,5組的居民稱為中老年組,若選出的200人中通過紙質(zhì)閱讀的中老年有30人,請(qǐng)完成下面2×2列聯(lián)表,并判斷是否有97.5%的把握認(rèn)為閱讀方式與年齡有關(guān)?

參考公式:.

查看答案和解析>>

同步練習(xí)冊(cè)答案