4.已知變量x,y滿足$\left\{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}\right.$,則u=log2(2x+y)的最大值為2.

分析 畫出滿足條件的平面區(qū)域,求出角點(diǎn)的坐標(biāo),結(jié)合圖象先求出2x+y的最大值,從而求出u的最大值即可.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:
易知可行域?yàn)橐粋(gè)三角形,
由$\left\{\begin{array}{l}{2x-y=0}\\{x-2y+3=0}\end{array}\right.$,解得A(1,2),
令z=2x+y,得y=-2x+z,
顯然直線過A(1,2)時(shí),z最大,z的最大值是4,
此時(shí)u=${log}_{2}^{4}$=2,
故答案為:2.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若動(dòng)點(diǎn)M到定點(diǎn)A(0,1)與定直線l:y=3的距離之和為4.
(1)求點(diǎn)M的軌跡方程,并畫出方程的曲線草圖;
(2)記(1)得到的軌跡為曲線C,問曲線C上關(guān)于點(diǎn)B(0,t)(t∈R)對(duì)稱的不同點(diǎn)有幾對(duì)?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)的定義域?yàn)镽,對(duì)任意x1<x2,有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>-1,且f(1)=1,則不等式f(log2|3x-1|)<2-log2|3x-1|的解集為( 。
A.(-∞,0)B.(-∞,1)C.(-1,0)∪(0,3)D.(-∞,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,$\overrightarrow{AE}$=λ$\overrightarrow{AB}$,$\overrightarrow{{D_1}F}$=μ$\overrightarrow{{D_1}B}$,其中λ∈(0,1),μ∈(0,1),滿足EF∥平面AA1D1D,則當(dāng)三棱錐A-EFB1的體積最大時(shí),λ+μ的值為(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知條件p:|x+1|<2,條件q:3x<3,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin(\frac{π}{4}x),2≤x≤10}\end{array}\right.$,若存在實(shí)數(shù)x1、x2、x3、x4滿足,x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則x1•x2•(x3-2)•(x4-2)的取值范圍是(  )
A.(4,16)B.(0,12)C.(9,21)D.(15,25)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與直線x-2y+1=0平行,則雙曲線的離心率為( 。
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)m、n∈R,且5m+12n=13,則m2+n2的最小值為( 。
A.$\frac{1}{169}$B.$\frac{1}{13}$C.1D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)平面向量$\overrightarrow a=\overrightarrow{OA}$,定義以x軸非負(fù)半軸為始邊,逆時(shí)針方向?yàn)檎较,OA為終邊的角稱為向量$\overrightarrow a$的幅角.若r1是向量$\overrightarrow a$的模,r2是向量$\overrightarrow b$的模,$\overrightarrow a$的幅角是θ1,$\overrightarrow b$的幅角是θ2,定義$\overrightarrow a?\overrightarrow b$的結(jié)果仍是向量,它的模為r1r2,它的幅角為θ12.給出$\overrightarrow a=({x_1},{y_1}),\overrightarrow b=({x_2},{y_2})$.試用$\overrightarrow a$、$\overrightarrow b$的坐標(biāo)表示$\overrightarrow a?\overrightarrow b$的坐標(biāo),結(jié)果為$\overrightarrow a?\overrightarrow b=({x_1}{x_2}-{y_1}{y_2},{x_1}{y_2}+{x_2}{y_1})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案