20.運行右邊的程序框圖,輸出的結(jié)果是$\frac{20}{21}$.

分析 由已知中的程序語句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量S的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:模擬程序的運行,可得該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量s=1-$\frac{1}{3}$$+\frac{1}{3}-$$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{19}$-$\frac{1}{21}$=
1-$\frac{1}{21}$=$\frac{20}{21}$的值.
故答案為:$\frac{20}{21}$.

點評 本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運行過程,以便得出正確的結(jié)論,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.定義在(0,+∞)上的函數(shù)y=f(x)的反函數(shù)為y=f-1(x),若g(x)=$\left\{\begin{array}{l}{{3}^{x}-1,x≤0}\\{f(x),x>0}\end{array}\right.$為奇函數(shù),則f-1(x)=2的解為$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=e|x|-cosx的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,4]上是單調(diào)遞減的,則實數(shù)a的取值范圍是(  )
A.a≤-3B.a≥-3C.a≤5D.a≥5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)某物體一天中的溫度T是時間t的函數(shù),已知T(t)=t3+at2+bt+c,其中溫度的單位是℃,時間的單位是小時,規(guī)定中午12:00相應(yīng)的t=0,中午12:00以后相應(yīng)的t取正數(shù),中午12:00以前相應(yīng)的t取負(fù)數(shù)(例如早上8:00對應(yīng)的t=-4,下午16:00相應(yīng)的t=4),若測得該物體在中午12:00的溫度為60℃,在下午13:00的溫度為58℃,且已知該物體的溫度在早上8:00與下午16:00有相同的變化率.
(1)求該物體的溫度T關(guān)于時間t的函數(shù)關(guān)系式;
(2)該物體在上午10:00至下午14:00這段時間中(包括端點)何時溫度最高?最高溫度是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.計算8${\;}^{-\frac{2}{3}}$+2lg2-lg$\frac{1}{25}$的值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將函數(shù)f(x)=$\sqrt{3}$sin$\frac{x}{2}$-cos$\frac{x}{2}$的圖象向右平移$\frac{2π}{3}$個單位長度得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)的一個單調(diào)遞減區(qū)間是(  )
A.(-$\frac{π}{4}$,$\frac{π}{2}$)B.($\frac{π}{2}$,π)C.(-$\frac{π}{2}$,-$\frac{π}{4}$)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某火鍋店為了解氣溫對營業(yè)額的影響,隨機記錄了該店1月份中5天的日營業(yè)額y(單位:千元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如表:
x289115
y1288710
(1)求y關(guān)于x的回歸方程$\hat y=\hat bx+\hat a$;
(2)判定y與x之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6℃,用所求回歸方程預(yù)測該店當(dāng)日的營業(yè)額.
(附:回歸方程$\hat y=\hat bx+\hat a$中,$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖是從甲、乙兩品種的棉花中各抽測了10根棉花的纖維長度(單位:mm)所得數(shù)據(jù)如圖莖葉圖,記甲、乙兩品種棉花的纖維長度的平均值分別為${\overline x_甲}$與${\overline x_乙}$,標(biāo)準(zhǔn)差分別為s與s,則下列說法不正確的是( 。
A.${\overline x_甲}<{\overline x_乙}$B.s>s
C.乙棉花的中位數(shù)為325.5mmD.甲棉花的眾數(shù)為322mm

查看答案和解析>>

同步練習(xí)冊答案