【題目】已知函數(shù)
①當(dāng)時(shí),函數(shù)有______零點(diǎn);
②若函數(shù)的值域?yàn)?/span>,則實(shí)數(shù)的取值范圍是______.
【答案】2個(gè)
【解析】
①求出當(dāng)時(shí)分段函數(shù)解析式,求函數(shù)的零點(diǎn)個(gè)數(shù)等價(jià)于求方程的根的個(gè)數(shù);②當(dāng)時(shí),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性從而求函數(shù)的值域;當(dāng)時(shí),由題意知,函數(shù)圖像為開口向上的二次函數(shù),則最小值,求解不等式即可.
①當(dāng)時(shí),,
當(dāng)時(shí),,,;
當(dāng)時(shí),,解得(舍去)或,
所以是函數(shù)的零點(diǎn),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);
②i、當(dāng)時(shí),,
令,解得,
所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,且函數(shù)過(guò)原點(diǎn),最小值為;
ii、當(dāng)時(shí),,
若,二次函數(shù)開口向下,最小值取到負(fù)無(wú)窮,不符合題意;
若,則函數(shù)為單調(diào)遞減的一次函數(shù),不符合題意;
若,函數(shù)圖像為開口向上的二次函數(shù),最小值在對(duì)稱軸處取到,
則.
故答案為:2個(gè);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),g(x)=b(x﹣1),其中a≠0,b≠0
(1)若a=b,討論F(x)=f(x)﹣g(x)的單調(diào)區(qū)間;
(2)已知函數(shù)f(x)的曲線與函數(shù)g(x)的曲線有兩個(gè)交點(diǎn),設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)分別是橢圓的左、右焦點(diǎn).
(1)若是該橢圓上的一個(gè)動(dòng)點(diǎn),求的最大值和最小值;
(2)設(shè)過(guò)定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某投資公司計(jì)劃投資、兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),產(chǎn)品的利潤(rùn)與投資量x成正比例,其關(guān)系如圖1,產(chǎn)品的利潤(rùn)與投資量x的算術(shù)平方根成正比例,其關(guān)系如圖2;(利潤(rùn)與投資量單位:萬(wàn)元)
(1)分別將、兩產(chǎn)品的利潤(rùn)表示為投資量的函數(shù)關(guān)系式;
(2)該公司已有20萬(wàn)元資金,并全部投入、兩種產(chǎn)品中,問(wèn):怎樣分配這20萬(wàn)元投資,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),證明: (其中e為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐P﹣ABCD中平面PAD⊥平面ABCD,AB∥CD,AB⊥AD,M為AD中點(diǎn),PA=PD,AD=AB=2CD=2.
(1)求證:平面PMB⊥平面PAC;
(2)求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA⊥AB,PA=1,PC=3,BC=2,sin∠PCA,E,F,G分別為線段的PC,PB,AB中點(diǎn),且BE.
(1)求證:AB⊥BC;
(2)若M為線段BC上一點(diǎn),求三棱錐M﹣EFG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, 滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)的值為__________.
【答案】或
【解析】由題可知若取得最大值的最優(yōu)解不唯一則必平行于可行域的某一邊界,如圖:要Z最大則直線與y軸的截距最大即可,當(dāng)a<0時(shí),則平行AC直線即可故a=-2,當(dāng)a>0時(shí),則直線平行AB即可,故a=1
點(diǎn)睛:線性規(guī)劃為?碱}型,解決此題務(wù)必要理解最優(yōu)解個(gè)數(shù)為無(wú)數(shù)個(gè)時(shí)的條件是什么,然后根據(jù)幾何關(guān)系求解即可
【題型】填空題
【結(jié)束】
16
【題目】《數(shù)書九章》三斜求積術(shù):“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約一,為實(shí),一為從隅,開平方得積”.秦九韶把三角形的三條邊分別稱為小斜、中斜和大斜,“術(shù)”即方法.以, , , 分別表示三角形的面積,大斜,中斜,小斜; , , 分別為對(duì)應(yīng)的大斜,中斜,小斜上的高;則 .若在中, , ,根據(jù)上述公式,可以推出該三角形外接圓的半徑為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=0,an+1=an+6n+3,數(shù)列{bn}滿足bn=n,則數(shù)列{bn}的最大項(xiàng)為第_____項(xiàng)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com