【題目】已知圓C:x2+y2﹣4x﹣14y+45=0及點Q(﹣2,3).
(1)若M為圓C上任一點,求|MQ|的最大值和最小值;
(2)若實數(shù)m,n滿足m2+n2﹣4m﹣14n+45=0,求k= 的最大值和最小值.
【答案】
(1)解:圓C:x2+y2﹣4x﹣14y+45=0可化為(x﹣2)2+(y﹣7)2=8,圓心坐標(biāo)為C(2,7),半徑r=2 ,
|QC|= =4 ,|MQ|max=4 +2 =6 ,|MQ|min=4 =2
(2)解:由題意,(m,n)是圓C上一點,k表示圓上任意一點與(﹣2,3)連線的斜率,
設(shè)直線方程為y﹣3=k(x+2),直線與圓C相切時,k取得最值,即 =2 ,
∴k=2 ,
∴k的最大值為2+ ,最小值為2﹣ .
【解析】(1)求出|QC|,即可求|MQ|的最大值和最小值;(2)由題意,(m,n)是圓C上一點,k表示圓上任意一點與(﹣2,3)連線的斜率,設(shè)直線方程為y﹣3=k(x+2),直線與圓C相切時,k取得最值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在三棱柱ABC﹣A1B1C1中,已知AB⊥側(cè)面BB1C1C,BC= ,AB=CC1=2,∠BCC1= ,點E在棱BB1上.
(1)求C1B的長,并證明C1B⊥平面ABC;
(2)若BE=λBB1 , 試確定λ的值,使得二面角A﹣C1E﹣C的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈R,x2+1>m;命題q:指數(shù)函數(shù)f(x)=(3﹣m)x是增函數(shù).若“p∧q”為假命題且“p∨q”為真命題,則實數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱錐A﹣BCD的側(cè)棱長為2,底面BCD的邊長為2 ,E,分別為BC,BD的中點,則三棱錐A﹣BEF的外接球的半徑R= , 內(nèi)切球半徑r= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 , 滿足| |=| =1,且|k + |= | ﹣k |(k>0),令f(k)= . (Ⅰ)求f(k)= (用k表示);
(Ⅱ)若f(k)≥x2﹣2tx﹣ 對任意k>0,任意t∈[﹣1,1]恒成立,求實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B是非空的集合,如果按某一個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個元素x,在集合中B都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A→B為從集合A到集合B的一個映射,設(shè)f:x→ 是從集合A到集合B的一個映射.①若A={0,1,2},則A∩B=;②若B={1,2},則A∩B= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2 + sin cos . (Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[ ,π],求f(x)的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈R,ax2+ax+1>0及命題q:x0∈R,x02﹣x0+a=0,若p∨q為真命題,p∧q為假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中 ①若loga3>logb3,則a>b;
②函數(shù)f(x)=x2﹣2x+3,x∈[0,+∞)的值域為[2,+∞);
③設(shè)g(x)是定義在區(qū)間[a,b]上的連續(xù)函數(shù).若g(a)=g(b)>0,則函數(shù)g(x)無零點;
④函數(shù) 既是奇函數(shù)又是減函數(shù).
其中正確的命題有 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com