【題目】已知平面多邊形中,,,的中點(diǎn),現(xiàn)將三角形沿折起,使.

(1)證明:平面

(2)求三棱錐的體積.

【答案】(1)詳見解析;(2).

【解析】

1)取的中點(diǎn),連,即可證明,結(jié)合即可證明四邊形為平行四邊形,問題得證。

2)取中點(diǎn),連接,,先說明平面,即可求得三角形為等邊三角形,取的中點(diǎn),先說明平面,利用體積變換及中點(diǎn)關(guān)系,將轉(zhuǎn)化成,問題得解。

解:(1)取的中點(diǎn),連.

中點(diǎn),∴的中位線,

.

,∴,

∴四邊形為平行四邊形,∴.

平面,平面,

平面.

(2)由題意知為等腰直角三角形,為直角梯形.

中點(diǎn),連接,

,∴,

,,∴平面,

平面,∵平面,∴.

∴在直角三角形中,,,∴

∴三角形為等邊三角形.

的中點(diǎn),則,,

平面,

的中點(diǎn),∴到平面的距離等于到平面的距離的一半,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形是菱形,,四邊形是直角梯形,,.

)證明:平面.

)若平面平面,的中點(diǎn),求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,如圖所示,已知橢圓的左、右頂點(diǎn)分別為,,右焦點(diǎn)為.設(shè)過點(diǎn)的直線與此橢圓分別交于點(diǎn),,其中,,.

(1)設(shè)動點(diǎn)滿足:,求點(diǎn)的軌跡;

(2)設(shè),求點(diǎn)的坐標(biāo);

(3)設(shè),求證:直線必過軸上的一定點(diǎn)(其坐標(biāo)與無關(guān)),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年10月28日,重慶公交車墜江事件震驚全國,也引發(fā)了廣大群眾的思考——如何做一個(gè)文明的乘客.全國各地大部分社區(qū)組織居民學(xué)習(xí)了文明乘車規(guī)范.社區(qū)委員會針對居民的學(xué)習(xí)結(jié)果進(jìn)行了相關(guān)的問卷調(diào)查,并將得到的分?jǐn)?shù)整理成如圖所示的統(tǒng)計(jì)圖.

(Ⅰ)求得分在上的頻率;

(Ⅱ)求社區(qū)居民問卷調(diào)查的平均得分的估計(jì)值;(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)

(Ⅲ)以頻率估計(jì)概率,若在全部參與學(xué)習(xí)的居民中隨機(jī)抽取5人參加問卷調(diào)查,記得分在間的人數(shù)為,求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),是自然對數(shù)的底數(shù))

(Ⅰ) 設(shè)(其中的導(dǎo)數(shù)),求的極小值;

(Ⅱ) 若對,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如上圖所示,在正方體中, 分別是棱的中點(diǎn), 的頂點(diǎn)在棱與棱上運(yùn)動,有以下四個(gè)命題:

A.平面 ; B.平面⊥平面;

C 在底面上的射影圖形的面積為定值;

D 在側(cè)面上的射影圖形是三角形.其中正確命題的序號是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)結(jié)論:

①命題“”的否定是“,”;

②命題“若,則”的否定是“若,則”;

③命題“若,則”的否命題是“若,則”;

④若“是假命題,是真命題”,則命題,一真一假.

其中正確結(jié)論的個(gè)數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游愛好者計(jì)劃從3個(gè)亞洲國家A1,A2,A33個(gè)歐洲國家B1,B2,B3中選擇2個(gè)國家去旅游.

(1)若從這6個(gè)國家中任選2個(gè),求這2個(gè)國家都是亞洲國家的概率;

(2)若從亞洲國家和歐洲國家中各選1個(gè),求這兩個(gè)國家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四面體中,,平面平面,,且.

(1)證明:平面;

(2)設(shè)為棱的中點(diǎn),當(dāng)四面體的體積取得最大值時(shí),求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案