已知平面上A(-1,1)、B(-2,0)、C(4,6)三點(diǎn),試證明A、B、C三點(diǎn)共線.

答案:
解析:

  證法一:∵kAB=1,kAC=1,∴kAB=kAC

  ∴A、B、C三點(diǎn)共線.

  證法二:∵AB=,

  ∴AB+AC=BC∴A、B、C三點(diǎn)共線


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:設(shè)計(jì)必修二數(shù)學(xué)蘇教版 蘇教版 題型:047

已知平面上A(-1,5)、B(-2,-1)、C(4,7)三點(diǎn),試證明A、B、C三點(diǎn)能構(gòu)成三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:全優(yōu)設(shè)計(jì)必修二數(shù)學(xué)蘇教版 蘇教版 題型:047

已知平面上A(-1,5)、B(-2,-1)、C(4,7)三點(diǎn),試證明A、B、C三點(diǎn)能構(gòu)成三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:全優(yōu)設(shè)計(jì)必修二數(shù)學(xué)蘇教版 蘇教版 題型:047

已知平面上A(-1,1)、B(-2,0)、C(4,6)?三點(diǎn),試證明A、B、C三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面上A、B、C三點(diǎn)的坐標(biāo)分別為A(-2,1),B(-1,3),C(3,4).試求以A、B、C三點(diǎn)為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案