(本題滿分14分)已知是定義在上的奇函數(shù),當(dāng)時(shí),
(1)求的解析式;
(2)是否存在負(fù)實(shí)數(shù),使得當(dāng)的最小值是4?如果存在,求出的值;如果不存在,請(qǐng)說明理由.
(3)對(duì)如果函數(shù)的圖像在函數(shù)的圖像的下方,則稱函數(shù)在D上被函數(shù)覆蓋.求證:若時(shí),函數(shù)在區(qū)間上被函數(shù)覆蓋.
(1)
(2)綜上知,存在a=-2e滿足題意;(3)見解析。
(1)設(shè)x∈[-e,0),利用函數(shù)為奇函數(shù),得到f(-x)=-f(x),將f(-x)的值代入,求出f(x)在x∈[-e,0)的解析式.
(2)求出f′(x)=0的根,討論根不在定義域內(nèi)時(shí),函數(shù)在定義域上遞增,求出最小值,令最小值等于4,求a;根在定義域內(nèi),列出x,f′(x),f(x)d的變化情況表,求出函數(shù)的最小值,列出方程求a值.
(3)本小題證明的實(shí)質(zhì)是證明當(dāng)時(shí),恒成立,然后構(gòu)造函數(shù)
,利用導(dǎo)數(shù)求h(x)的最小值,證明其最小值大于零即可.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義在[-1,1]上的偶函數(shù)f(x),已知當(dāng)x∈[0,1]時(shí)的解析式為 (a∈R).
(1)求f(x)在[-1,0]上的解析式;
(2)求f(x)在[0,1]上的最大值h(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)f(x)是定義在R上的周期為3的周期函數(shù),如圖表示該函數(shù)在區(qū)間(-2,1]上的圖象,則f(2 011)+f(2 012)=
A.3 B.2C.1 D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,且,則函數(shù) (   )
A.為奇函數(shù)B.為偶函數(shù)
C.為增函數(shù)且為奇函數(shù)D.為增函數(shù)且為偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)是定義在上的偶函數(shù),為奇函數(shù),,當(dāng)時(shí),,則在內(nèi)滿足方程的實(shí)數(shù)
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列哪個(gè)函數(shù)能滿足
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

都是定義在R上的奇函數(shù),且,若,則
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)為奇函數(shù),則
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù),若,則_______

查看答案和解析>>

同步練習(xí)冊(cè)答案