精英家教網 > 高中數學 > 題目詳情

【題目】設向量a=(sinx-1,1),b=(sinx+3,1),c=(-1,-2),d=(k,1),k∈R.

(1)若x∈[-,],且a∥(bc),求x的值;

(2)若存在x∈R,使得(ad)⊥(bc),求k的取值范圍.

【答案】(1) x=-. (2) k的取值范圍是[ ,4].

【解析】

試題分析:(1)運用向量的共線的坐標表示及三角函數的圖象和性質,即可解得 ;
(2)運用向量的垂直的條件,以及參數分離和正弦函數的值域,即可求得 的范圍.

試題解析:(1)由于b=(sinx+3,1),c=(-1,-2),bc=(sinx+2,-1)

a=(sinx-1,1),a∥(bc),則有sinx+2=1-sinxsinx=-,

由于x[-],x=-.

(2)若存在xR,使得(ad)(bc),則有(sinx-1+k,2)(sinx+2,-1)=0,

即有k+1-sinx,2+sinxt(1t3)

kt+3,k=--1<0,k[1,3]上遞減,

則有k4,k的取值范圍是[,4].

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設雙曲線的左,右焦點分別為F1,F2,過F1的直線l交雙曲線左支于A,B兩點,則|BF2|+|AF2|的最小值為(  )

A. B. 11

C. 12 D. 16

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數;

1)求函數的定義域;

2)試判斷函數的奇偶性并證明;

3)若,求函數的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果A1B1C1的三個內角的余弦值分別等于A2B2C2的三個內角的正弦值,則( )

A.A1B1C1A2B2C2都是銳角三角形

B.A1B1C1A2B2C2都是鈍角三角形

C.A1B1C1是鈍角三角形,A2B2C2是銳角三角形

D.A1B1C1是銳角三角形,A2B2C2是鈍角三角形

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大型高端制造公司為響應《中國制造2025》中提出的堅持“創(chuàng)新驅動、質量為先、綠色發(fā)展、結構優(yōu)化、人才為本”的基本方針,準備加大產品研發(fā)投資,下表是該公司2017年5~12月份研發(fā)費用(百萬元)和產品銷量(萬臺)的具體數據:

(1)根據數據可知之間存在線性相關關系

(i)求出關于的線性回歸方程(系數精確到);

(ii)若2018年6月份研發(fā)投人為25百萬元,根據所求的線性回歸方程估計當月產品的銷量;

(2)公司在2017年年終總結時準備從該年8~12月份這5個月中抽取3個月的數據進行重點分析,求沒有抽到9月份數據的概率.

參考數據: ,.

參考公式:對于一組數據,,其回歸直線的斜率和截距的最小二乘估計分別為: ,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,a,b,c分別是角AB、C的對邊,x=(2ac,b),y=(cosB,cosC),且x·y=0.

(1)求B的大。

(2)若b,求||的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知全集為R,函數fx)=lg1x)的定義域為集合A,集合B{x|x2x60}

(Ⅰ)求AB;

(Ⅱ)若C{x|m1xm+1},CARB)),求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數的定義域為R,的極大值點,以下結論一定正確的是________

,

的極小值點;

的極小值點;

的極小值點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知從地去地有①或②兩條路可走,并且汽車走路①堵車的概率為,汽車走路②堵車的概率為,若現在有兩輛汽車走路①,有一輛汽車走路②,且這三輛車是否堵車相互之間沒有影響,

(1)若這三輛汽車中恰有一輛汽車被堵的概率為,求走路②堵車的概率;

(2)在(1)的條件下,求這三輛汽車中被堵車輛的輛數的分布列和數學期望.

查看答案和解析>>

同步練習冊答案