【題目】一個函數(shù),如果對任意一個三角形,只要它的三邊長、、都在的定義域內(nèi),就有、、也是某個三角形的三邊長,則稱為“雙三角形函數(shù)”.
(1)判斷,,中,哪些是“雙三角形函數(shù)”,哪些不是,并說明理由;
(2)若是定義在上周期函數(shù),值域為,求證:不是“雙三角形函數(shù)”;
(3)已知函數(shù),,求證:函數(shù)是“雙三角形函數(shù)”.(可利用公式“”)
【答案】(1)、是“雙三角形函數(shù)”,不是;(2)證明見解析;(3)證明見解析.
【解析】
(1)任給三角形,設(shè)它的三邊長分別為、、,則,不妨設(shè),判斷、、是否滿足任意兩數(shù)之和大于第三個數(shù),即任意兩邊之和大于第三邊;
(2)要想一個函數(shù)不是“雙三角形函數(shù)”關(guān)鍵是根據(jù)題中條件是定義在上的周期函數(shù),值域為,舉出反例;
(3)分別討論與兩種情況下的關(guān)系,即可得證
(1)、是“雙三角形函數(shù)”,不是;
任給三角形,設(shè)它的三邊長分別為、、,則,不妨設(shè),由于,所以、是“雙三角形函數(shù)”.
對于,3,3,5可以作為一個三角形的三邊長,但,所以不存在三角形以可作為一個三角形的三邊長,故不是“雙三角形函數(shù)”.
(2)證明:設(shè)為的一個周期,由于其值域為,所以,存在,使得,,取正整數(shù),可知,,這三個數(shù)可作為一個三角形的三邊長,但,,不能作為任何一個三角形的三邊長,故不是“雙三角形函數(shù)”.
(3)證明:對任意三角形的三邊、、,若,
則①當(dāng)時,此時,同理可得,,
所以,則,,同理可證其余兩式.
所以可作為某個三角形的三邊長.
②,此時,可得如下兩種情況:
當(dāng)時,由于,所以.
由在上的單調(diào)性可得;
當(dāng)時,,同樣,由在上的單調(diào)性可得
故,
又由及余弦函數(shù)在上單調(diào)遞減,可得,
所以,
同理可證其余兩式,所以可作為某個三角形的三邊長.
綜上,函數(shù)是“雙三角形函數(shù)”.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由9個正數(shù)組成的矩陣中,每行中三個數(shù)成等差數(shù)列,且、、成等比數(shù)列,給出下列判斷:① 第2列中,、、必成等比數(shù)列;② 第1列中的、、不一定成等比數(shù)列;③ ;④ 若9個數(shù)之和等于9,則;其中正確的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),。
(1)求的單調(diào)區(qū)間;
(2)討論零點的個數(shù);
(3)當(dāng)時,設(shè)恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為其右頂點為,下頂點為,定點,的面積為過點作與軸不重合的直線交橢圓于兩點,直線分別與軸交于兩點.
(1)求橢圓的方程;
(2)試探究的橫坐標(biāo)的乘積是否為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年1月1日起我國實施了個人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個稅起征點為5000元;(2)每月應(yīng)納稅所得額(含稅)收入個稅起征點專項附加扣除;(3)專項附加扣除包括①贍養(yǎng)老人費用 ②子女教育費用 ③繼續(xù)教育費用 ④大病醫(yī)療費用等,其中前兩項的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費用:每月共扣除2000元 ②子女教育費用:每個子女每月扣除1000元.新個稅政策的稅率表部分內(nèi)容如下:
級數(shù) | 全月應(yīng)納稅所得額 | 稅率 |
1 | 不超過3000元的部分 | 3% |
2 | 超過3000元至12000元的部分 | 10% |
3 | 超過12000元至25000元的部分 | 20% |
現(xiàn)有李某月收入18000元,膝下有兩名子女,需要贍養(yǎng)老人,(除此之外,無其它專項附加扣除,專項附加扣除均按標(biāo)準(zhǔn)的100%扣除),則李某月應(yīng)繳納的個稅金額為( )
A.590元B.690元C.790元D.890元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定函數(shù)和,令,對以下三個論斷:
(1)若和都是奇函數(shù),則也是奇函數(shù);(2)若和都是非奇非偶函數(shù),則也是非奇非偶函數(shù):(3)和之一與有相同的奇偶性;其中正確論斷的個數(shù)為( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù).
(1)根據(jù)不同取值,討論函數(shù)的奇偶性;
(2)若,對于任意的,不等式恒成立,求實數(shù)的取值范圍;
(3)若已知,. 設(shè)函數(shù),,存在、,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若時,討論在區(qū)間上零點個數(shù);
(2)若當(dāng)時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com